Ontology type: schema:ScholarlyArticle
2009-12-06
AUTHORST. V. Alekseeva, E. V. Sapova, L. M. Gerasimenko, A. O. Alekseev
ABSTRACTTransformation of clay minerals (smectite-zeolite, illite, kaolinite, and bentonite) and admixtures of iron oxides (hydroxides) under the action of an alkaline cyanobacterial community was studied. The results demonstrate that the processes of transformation of clay minerals such as intensification of removal of exchange bases and dissolution of silicates and iron oxides occurred in the presence of the alkaliphilic cyanobacterial community. The main factor that determines resistance of a mineral to biochemical weathering is its composition. Transformations of clay minerals in the course of active cyanobacterial photosynthesis (up to 14 days) and at decomposition of organic matter (OM) (28–60 days) are different. For smectite-zeolite and illite, these processes are dissolution of silicates and oxides (removal of Si and Fe) and removal of exchange bases (K), which were observed at both the of biomass production and OM destruction stages. For two other clays, the processes of neosynthesis are more typical: formation of carbonates (most probably siderite for bentonite clay and Mg-calcite for kaolin clay) and transformation of ferrihydrite into the more thermodynamically stable goethite. More... »
PAGES776
http://scigraph.springernature.com/pub.10.1134/s0026261709060150
DOIhttp://dx.doi.org/10.1134/s0026261709060150
DIMENSIONShttps://app.dimensions.ai/details/publication/pub.1017537256
JSON-LD is the canonical representation for SciGraph data.
TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT
[
{
"@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json",
"about": [
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Biological Sciences",
"type": "DefinedTerm"
},
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Medical and Health Sciences",
"type": "DefinedTerm"
},
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0605",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Microbiology",
"type": "DefinedTerm"
},
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1108",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Medical Microbiology",
"type": "DefinedTerm"
}
],
"author": [
{
"affiliation": {
"alternateName": "Institute of Physicochemical and Biological Problems of Soil Science, Russian Academy of Sciences, ul. Institutskaya 2, 142290, Pushchino, Moscow oblast, Russia",
"id": "http://www.grid.ac/institutes/grid.470117.4",
"name": [
"Institute of Physicochemical and Biological Problems of Soil Science, Russian Academy of Sciences, ul. Institutskaya 2, 142290, Pushchino, Moscow oblast, Russia"
],
"type": "Organization"
},
"familyName": "Alekseeva",
"givenName": "T. V.",
"id": "sg:person.01037317572.21",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01037317572.21"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Paleontological Institute, Russian Academy of Sciences, ul. Profsoyuznaya 123, 117321, Moscow, Russia",
"id": "http://www.grid.ac/institutes/grid.4886.2",
"name": [
"Paleontological Institute, Russian Academy of Sciences, ul. Profsoyuznaya 123, 117321, Moscow, Russia"
],
"type": "Organization"
},
"familyName": "Sapova",
"givenName": "E. V.",
"id": "sg:person.013627764316.81",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013627764316.81"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Winogradsky Institute of Microbiology, Russian Academy of Sciences, pr. 60-letiya Oktyabrya 7/2, 117312, Moscow, Russia",
"id": "http://www.grid.ac/institutes/grid.4886.2",
"name": [
"Winogradsky Institute of Microbiology, Russian Academy of Sciences, pr. 60-letiya Oktyabrya 7/2, 117312, Moscow, Russia"
],
"type": "Organization"
},
"familyName": "Gerasimenko",
"givenName": "L. M.",
"id": "sg:person.01065571230.76",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01065571230.76"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Institute of Physicochemical and Biological Problems of Soil Science, Russian Academy of Sciences, ul. Institutskaya 2, 142290, Pushchino, Moscow oblast, Russia",
"id": "http://www.grid.ac/institutes/grid.470117.4",
"name": [
"Institute of Physicochemical and Biological Problems of Soil Science, Russian Academy of Sciences, ul. Institutskaya 2, 142290, Pushchino, Moscow oblast, Russia"
],
"type": "Organization"
},
"familyName": "Alekseev",
"givenName": "A. O.",
"id": "sg:person.010710175516.30",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010710175516.30"
],
"type": "Person"
}
],
"citation": [
{
"id": "sg:pub.10.1007/978-94-009-4007-9_17",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1045395079",
"https://doi.org/10.1007/978-94-009-4007-9_17"
],
"type": "CreativeWork"
}
],
"datePublished": "2009-12-06",
"datePublishedReg": "2009-12-06",
"description": "Transformation of clay minerals (smectite-zeolite, illite, kaolinite, and bentonite) and admixtures of iron oxides (hydroxides) under the action of an alkaline cyanobacterial community was studied. The results demonstrate that the processes of transformation of clay minerals such as intensification of removal of exchange bases and dissolution of silicates and iron oxides occurred in the presence of the alkaliphilic cyanobacterial community. The main factor that determines resistance of a mineral to biochemical weathering is its composition. Transformations of clay minerals in the course of active cyanobacterial photosynthesis (up to 14 days) and at decomposition of organic matter (OM) (28\u201360 days) are different. For smectite-zeolite and illite, these processes are dissolution of silicates and oxides (removal of Si and Fe) and removal of exchange bases (K), which were observed at both the of biomass production and OM destruction stages. For two other clays, the processes of neosynthesis are more typical: formation of carbonates (most probably siderite for bentonite clay and Mg-calcite for kaolin clay) and transformation of ferrihydrite into the more thermodynamically stable goethite.",
"genre": "article",
"id": "sg:pub.10.1134/s0026261709060150",
"isAccessibleForFree": false,
"isPartOf": [
{
"id": "sg:journal.1327383",
"issn": [
"0026-3656",
"0026-2617"
],
"name": "Microbiology",
"publisher": "Pleiades Publishing",
"type": "Periodical"
},
{
"issueNumber": "6",
"type": "PublicationIssue"
},
{
"type": "PublicationVolume",
"volumeNumber": "78"
}
],
"keywords": [
"clay minerals",
"iron oxide",
"dissolution of silicates",
"transformation of ferrihydrite",
"formation of carbonates",
"stable goethite",
"organic matter",
"oxide",
"biochemical weathering",
"dissolution",
"minerals",
"silicate",
"cyanobacterial photosynthesis",
"ferrihydrite",
"goethite",
"removal",
"carbonate",
"destruction stage",
"transformation",
"decomposition",
"formation",
"clay",
"illite",
"process",
"composition",
"weathering",
"presence",
"photosynthesis",
"basis",
"main factors",
"admixture",
"exchange basis",
"resistance",
"matter",
"production",
"results",
"action",
"intensification",
"cyanobacterial communities",
"factors",
"stage",
"neosynthesis",
"process of transformation",
"biomass production",
"course",
"community"
],
"name": "Transformation of clay minerals caused by an alkaliphilic cyanobacterial community",
"pagination": "776",
"productId": [
{
"name": "dimensions_id",
"type": "PropertyValue",
"value": [
"pub.1017537256"
]
},
{
"name": "doi",
"type": "PropertyValue",
"value": [
"10.1134/s0026261709060150"
]
}
],
"sameAs": [
"https://doi.org/10.1134/s0026261709060150",
"https://app.dimensions.ai/details/publication/pub.1017537256"
],
"sdDataset": "articles",
"sdDatePublished": "2022-08-04T16:58",
"sdLicense": "https://scigraph.springernature.com/explorer/license/",
"sdPublisher": {
"name": "Springer Nature - SN SciGraph project",
"type": "Organization"
},
"sdSource": "s3://com-springernature-scigraph/baseset/20220804/entities/gbq_results/article/article_477.jsonl",
"type": "ScholarlyArticle",
"url": "https://doi.org/10.1134/s0026261709060150"
}
]
Download the RDF metadata as: json-ld nt turtle xml License info
JSON-LD is a popular format for linked data which is fully compatible with JSON.
curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1134/s0026261709060150'
N-Triples is a line-based linked data format ideal for batch operations.
curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1134/s0026261709060150'
Turtle is a human-readable linked data format.
curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1134/s0026261709060150'
RDF/XML is a standard XML format for linked data.
curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1134/s0026261709060150'
This table displays all metadata directly associated to this object as RDF triples.
141 TRIPLES
21 PREDICATES
73 URIs
62 LITERALS
6 BLANK NODES
Subject | Predicate | Object | |
---|---|---|---|
1 | sg:pub.10.1134/s0026261709060150 | schema:about | anzsrc-for:06 |
2 | ″ | ″ | anzsrc-for:0605 |
3 | ″ | ″ | anzsrc-for:11 |
4 | ″ | ″ | anzsrc-for:1108 |
5 | ″ | schema:author | Na481af21efd7409b877fa6c8a3bc6a60 |
6 | ″ | schema:citation | sg:pub.10.1007/978-94-009-4007-9_17 |
7 | ″ | schema:datePublished | 2009-12-06 |
8 | ″ | schema:datePublishedReg | 2009-12-06 |
9 | ″ | schema:description | Transformation of clay minerals (smectite-zeolite, illite, kaolinite, and bentonite) and admixtures of iron oxides (hydroxides) under the action of an alkaline cyanobacterial community was studied. The results demonstrate that the processes of transformation of clay minerals such as intensification of removal of exchange bases and dissolution of silicates and iron oxides occurred in the presence of the alkaliphilic cyanobacterial community. The main factor that determines resistance of a mineral to biochemical weathering is its composition. Transformations of clay minerals in the course of active cyanobacterial photosynthesis (up to 14 days) and at decomposition of organic matter (OM) (28–60 days) are different. For smectite-zeolite and illite, these processes are dissolution of silicates and oxides (removal of Si and Fe) and removal of exchange bases (K), which were observed at both the of biomass production and OM destruction stages. For two other clays, the processes of neosynthesis are more typical: formation of carbonates (most probably siderite for bentonite clay and Mg-calcite for kaolin clay) and transformation of ferrihydrite into the more thermodynamically stable goethite. |
10 | ″ | schema:genre | article |
11 | ″ | schema:isAccessibleForFree | false |
12 | ″ | schema:isPartOf | N42c84126b0514e11917a8ed54775b9d4 |
13 | ″ | ″ | Nc68cf9b0575f4ddaafdc661337addc2e |
14 | ″ | ″ | sg:journal.1327383 |
15 | ″ | schema:keywords | action |
16 | ″ | ″ | admixture |
17 | ″ | ″ | basis |
18 | ″ | ″ | biochemical weathering |
19 | ″ | ″ | biomass production |
20 | ″ | ″ | carbonate |
21 | ″ | ″ | clay |
22 | ″ | ″ | clay minerals |
23 | ″ | ″ | community |
24 | ″ | ″ | composition |
25 | ″ | ″ | course |
26 | ″ | ″ | cyanobacterial communities |
27 | ″ | ″ | cyanobacterial photosynthesis |
28 | ″ | ″ | decomposition |
29 | ″ | ″ | destruction stage |
30 | ″ | ″ | dissolution |
31 | ″ | ″ | dissolution of silicates |
32 | ″ | ″ | exchange basis |
33 | ″ | ″ | factors |
34 | ″ | ″ | ferrihydrite |
35 | ″ | ″ | formation |
36 | ″ | ″ | formation of carbonates |
37 | ″ | ″ | goethite |
38 | ″ | ″ | illite |
39 | ″ | ″ | intensification |
40 | ″ | ″ | iron oxide |
41 | ″ | ″ | main factors |
42 | ″ | ″ | matter |
43 | ″ | ″ | minerals |
44 | ″ | ″ | neosynthesis |
45 | ″ | ″ | organic matter |
46 | ″ | ″ | oxide |
47 | ″ | ″ | photosynthesis |
48 | ″ | ″ | presence |
49 | ″ | ″ | process |
50 | ″ | ″ | process of transformation |
51 | ″ | ″ | production |
52 | ″ | ″ | removal |
53 | ″ | ″ | resistance |
54 | ″ | ″ | results |
55 | ″ | ″ | silicate |
56 | ″ | ″ | stable goethite |
57 | ″ | ″ | stage |
58 | ″ | ″ | transformation |
59 | ″ | ″ | transformation of ferrihydrite |
60 | ″ | ″ | weathering |
61 | ″ | schema:name | Transformation of clay minerals caused by an alkaliphilic cyanobacterial community |
62 | ″ | schema:pagination | 776 |
63 | ″ | schema:productId | N92a5e67c349c46fd956b7133d3bd39de |
64 | ″ | ″ | Nf667d41e5563435d9a51cab4f99f29a0 |
65 | ″ | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1017537256 |
66 | ″ | ″ | https://doi.org/10.1134/s0026261709060150 |
67 | ″ | schema:sdDatePublished | 2022-08-04T16:58 |
68 | ″ | schema:sdLicense | https://scigraph.springernature.com/explorer/license/ |
69 | ″ | schema:sdPublisher | Nc36a0a9687294db0a7a516fd73618cda |
70 | ″ | schema:url | https://doi.org/10.1134/s0026261709060150 |
71 | ″ | sgo:license | sg:explorer/license/ |
72 | ″ | sgo:sdDataset | articles |
73 | ″ | rdf:type | schema:ScholarlyArticle |
74 | N42c84126b0514e11917a8ed54775b9d4 | schema:volumeNumber | 78 |
75 | ″ | rdf:type | schema:PublicationVolume |
76 | N43aab0c42ff84a1a96093fd8eac19a45 | rdf:first | sg:person.010710175516.30 |
77 | ″ | rdf:rest | rdf:nil |
78 | N92a5e67c349c46fd956b7133d3bd39de | schema:name | doi |
79 | ″ | schema:value | 10.1134/s0026261709060150 |
80 | ″ | rdf:type | schema:PropertyValue |
81 | Na481af21efd7409b877fa6c8a3bc6a60 | rdf:first | sg:person.01037317572.21 |
82 | ″ | rdf:rest | Nba092a2f86c44f10984223701885eabd |
83 | Nba092a2f86c44f10984223701885eabd | rdf:first | sg:person.013627764316.81 |
84 | ″ | rdf:rest | Nc471ad3ed3cd4739838044afdf0bf4ec |
85 | Nc36a0a9687294db0a7a516fd73618cda | schema:name | Springer Nature - SN SciGraph project |
86 | ″ | rdf:type | schema:Organization |
87 | Nc471ad3ed3cd4739838044afdf0bf4ec | rdf:first | sg:person.01065571230.76 |
88 | ″ | rdf:rest | N43aab0c42ff84a1a96093fd8eac19a45 |
89 | Nc68cf9b0575f4ddaafdc661337addc2e | schema:issueNumber | 6 |
90 | ″ | rdf:type | schema:PublicationIssue |
91 | Nf667d41e5563435d9a51cab4f99f29a0 | schema:name | dimensions_id |
92 | ″ | schema:value | pub.1017537256 |
93 | ″ | rdf:type | schema:PropertyValue |
94 | anzsrc-for:06 | schema:inDefinedTermSet | anzsrc-for: |
95 | ″ | schema:name | Biological Sciences |
96 | ″ | rdf:type | schema:DefinedTerm |
97 | anzsrc-for:0605 | schema:inDefinedTermSet | anzsrc-for: |
98 | ″ | schema:name | Microbiology |
99 | ″ | rdf:type | schema:DefinedTerm |
100 | anzsrc-for:11 | schema:inDefinedTermSet | anzsrc-for: |
101 | ″ | schema:name | Medical and Health Sciences |
102 | ″ | rdf:type | schema:DefinedTerm |
103 | anzsrc-for:1108 | schema:inDefinedTermSet | anzsrc-for: |
104 | ″ | schema:name | Medical Microbiology |
105 | ″ | rdf:type | schema:DefinedTerm |
106 | sg:journal.1327383 | schema:issn | 0026-2617 |
107 | ″ | ″ | 0026-3656 |
108 | ″ | schema:name | Microbiology |
109 | ″ | schema:publisher | Pleiades Publishing |
110 | ″ | rdf:type | schema:Periodical |
111 | sg:person.01037317572.21 | schema:affiliation | grid-institutes:grid.470117.4 |
112 | ″ | schema:familyName | Alekseeva |
113 | ″ | schema:givenName | T. V. |
114 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01037317572.21 |
115 | ″ | rdf:type | schema:Person |
116 | sg:person.01065571230.76 | schema:affiliation | grid-institutes:grid.4886.2 |
117 | ″ | schema:familyName | Gerasimenko |
118 | ″ | schema:givenName | L. M. |
119 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01065571230.76 |
120 | ″ | rdf:type | schema:Person |
121 | sg:person.010710175516.30 | schema:affiliation | grid-institutes:grid.470117.4 |
122 | ″ | schema:familyName | Alekseev |
123 | ″ | schema:givenName | A. O. |
124 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010710175516.30 |
125 | ″ | rdf:type | schema:Person |
126 | sg:person.013627764316.81 | schema:affiliation | grid-institutes:grid.4886.2 |
127 | ″ | schema:familyName | Sapova |
128 | ″ | schema:givenName | E. V. |
129 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013627764316.81 |
130 | ″ | rdf:type | schema:Person |
131 | sg:pub.10.1007/978-94-009-4007-9_17 | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1045395079 |
132 | ″ | ″ | https://doi.org/10.1007/978-94-009-4007-9_17 |
133 | ″ | rdf:type | schema:CreativeWork |
134 | grid-institutes:grid.470117.4 | schema:alternateName | Institute of Physicochemical and Biological Problems of Soil Science, Russian Academy of Sciences, ul. Institutskaya 2, 142290, Pushchino, Moscow oblast, Russia |
135 | ″ | schema:name | Institute of Physicochemical and Biological Problems of Soil Science, Russian Academy of Sciences, ul. Institutskaya 2, 142290, Pushchino, Moscow oblast, Russia |
136 | ″ | rdf:type | schema:Organization |
137 | grid-institutes:grid.4886.2 | schema:alternateName | Paleontological Institute, Russian Academy of Sciences, ul. Profsoyuznaya 123, 117321, Moscow, Russia |
138 | ″ | ″ | Winogradsky Institute of Microbiology, Russian Academy of Sciences, pr. 60-letiya Oktyabrya 7/2, 117312, Moscow, Russia |
139 | ″ | schema:name | Paleontological Institute, Russian Academy of Sciences, ul. Profsoyuznaya 123, 117321, Moscow, Russia |
140 | ″ | ″ | Winogradsky Institute of Microbiology, Russian Academy of Sciences, pr. 60-letiya Oktyabrya 7/2, 117312, Moscow, Russia |
141 | ″ | rdf:type | schema:Organization |