Variability in Contents of the Major Ore Components of Ferromanganese Formations in the Lakes–Seas–Oceans Series View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2018-11

AUTHORS

R. I. Nedumov

ABSTRACT

Based on statistical methods, the available literature data were processed to analyze regularities in the distribution of five ore elements (Fe, Mn, Cu, Co, Ni) in ferromanganese nodules and crusts in an idealized lakes–seas–oceans profile. Application of the cluster analysis confirmed the regularities revealed by calculations of the mean contents of these elements and unraveled some additional features of their distribution. More... »

PAGES

507-524

Journal

TITLE

Lithology and Mineral Resources

ISSUE

6

VOLUME

53

Author Affiliations

Identifiers

URI

http://scigraph.springernature.com/pub.10.1134/s002449021806007x

DOI

http://dx.doi.org/10.1134/s002449021806007x

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1108054896


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0104", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Statistics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Russian Academy of Sciences", 
          "id": "https://www.grid.ac/institutes/grid.4886.2", 
          "name": [
            "Geological Institute, Russian Academy of Sciences, Pyzhevskii per. 7, 119017, Moscow, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Nedumov", 
        "givenName": "R. I.", 
        "id": "sg:person.014473760566.83", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014473760566.83"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/0025-3227(82)90058-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001552740"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0025-3227(82)90058-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001552740"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jseaes.2007.03.003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014412641"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00207513", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014634392", 
          "https://doi.org/10.1007/bf00207513"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00207513", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014634392", 
          "https://doi.org/10.1007/bf00207513"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/00288306.1967.10423222", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015037931"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0025-3227(85)90150-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023829290"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0025-3227(85)90150-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023829290"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/11035895509455349", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034331769"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00373306", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034794185", 
          "https://doi.org/10.1007/bf00373306"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.4319/lo.1970.15.5.0702", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036922452"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.4319/lo.1965.10.2.0268", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037018710"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1134/s1819714009010047", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039393616", 
          "https://doi.org/10.1134/s1819714009010047"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2113/gssajg.110.2-3.295", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042681529"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jseaes.2010.10.010", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043998345"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0016-7037(67)90059-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044032009"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0016-7037(67)90059-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044032009"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/292233a0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044696825", 
          "https://doi.org/10.1038/292233a0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/292233a0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044696825", 
          "https://doi.org/10.1038/292233a0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/2131218a0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044760999", 
          "https://doi.org/10.1038/2131218a0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/2131218a0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044760999", 
          "https://doi.org/10.1038/2131218a0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1130/0016-7606(1971)82[101:fwinil]2.0.co;2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048788026"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0011-7471(69)90003-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1054543083"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0011-7471(69)90003-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1054543083"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/01621459.1963.10500845", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058299788"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1086/626161", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058821943"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.154.3749.643", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062489860"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.162.3858.1123", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062495836"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.166.3905.604", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062498224"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2113/gsecongeo.58.1.1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1068929213"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2307/2346830", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1101982469"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2307/2346830", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1101982469"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2018-11", 
    "datePublishedReg": "2018-11-01", 
    "description": "Based on statistical methods, the available literature data were processed to analyze regularities in the distribution of five ore elements (Fe, Mn, Cu, Co, Ni) in ferromanganese nodules and crusts in an idealized lakes\u2013seas\u2013oceans profile. Application of the cluster analysis confirmed the regularities revealed by calculations of the mean contents of these elements and unraveled some additional features of their distribution.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1134/s002449021806007x", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1136705", 
        "issn": [
          "0024-4902", 
          "1608-3229"
        ], 
        "name": "Lithology and Mineral Resources", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "6", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "53"
      }
    ], 
    "name": "Variability in Contents of the Major Ore Components of Ferromanganese Formations in the Lakes\u2013Seas\u2013Oceans Series", 
    "pagination": "507-524", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "43ba2311afce3bcfeb148326afa7f119c29e583e79e7d621d2cb5210f2419fa5"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1134/s002449021806007x"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1108054896"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1134/s002449021806007x", 
      "https://app.dimensions.ai/details/publication/pub.1108054896"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T21:49", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8687_00000578.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1134%2FS002449021806007X"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1134/s002449021806007x'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1134/s002449021806007x'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1134/s002449021806007x'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1134/s002449021806007x'


 

This table displays all metadata directly associated to this object as RDF triples.

138 TRIPLES      21 PREDICATES      51 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1134/s002449021806007x schema:about anzsrc-for:01
2 anzsrc-for:0104
3 schema:author Na04973fe0c704e95a03d94eb9cd4514b
4 schema:citation sg:pub.10.1007/bf00207513
5 sg:pub.10.1007/bf00373306
6 sg:pub.10.1038/2131218a0
7 sg:pub.10.1038/292233a0
8 sg:pub.10.1134/s1819714009010047
9 https://doi.org/10.1016/0011-7471(69)90003-5
10 https://doi.org/10.1016/0016-7037(67)90059-2
11 https://doi.org/10.1016/0025-3227(82)90058-5
12 https://doi.org/10.1016/0025-3227(85)90150-1
13 https://doi.org/10.1016/j.jseaes.2007.03.003
14 https://doi.org/10.1016/j.jseaes.2010.10.010
15 https://doi.org/10.1080/00288306.1967.10423222
16 https://doi.org/10.1080/01621459.1963.10500845
17 https://doi.org/10.1080/11035895509455349
18 https://doi.org/10.1086/626161
19 https://doi.org/10.1126/science.154.3749.643
20 https://doi.org/10.1126/science.162.3858.1123
21 https://doi.org/10.1126/science.166.3905.604
22 https://doi.org/10.1130/0016-7606(1971)82[101:fwinil]2.0.co;2
23 https://doi.org/10.2113/gsecongeo.58.1.1
24 https://doi.org/10.2113/gssajg.110.2-3.295
25 https://doi.org/10.2307/2346830
26 https://doi.org/10.4319/lo.1965.10.2.0268
27 https://doi.org/10.4319/lo.1970.15.5.0702
28 schema:datePublished 2018-11
29 schema:datePublishedReg 2018-11-01
30 schema:description Based on statistical methods, the available literature data were processed to analyze regularities in the distribution of five ore elements (Fe, Mn, Cu, Co, Ni) in ferromanganese nodules and crusts in an idealized lakes–seas–oceans profile. Application of the cluster analysis confirmed the regularities revealed by calculations of the mean contents of these elements and unraveled some additional features of their distribution.
31 schema:genre research_article
32 schema:inLanguage en
33 schema:isAccessibleForFree false
34 schema:isPartOf N43c05c55d4dc4ba0bcc8fce3c4582b92
35 N6fd3c76401084b6993d7191a20e9fe4b
36 sg:journal.1136705
37 schema:name Variability in Contents of the Major Ore Components of Ferromanganese Formations in the Lakes–Seas–Oceans Series
38 schema:pagination 507-524
39 schema:productId Na35fab8e4a2645359b3c3b1887f71f1f
40 Nc044a5f5ca3d428bb5a44165e5ddb386
41 Nce0ddcaccd9040559a10c7a6b32f9698
42 schema:sameAs https://app.dimensions.ai/details/publication/pub.1108054896
43 https://doi.org/10.1134/s002449021806007x
44 schema:sdDatePublished 2019-04-10T21:49
45 schema:sdLicense https://scigraph.springernature.com/explorer/license/
46 schema:sdPublisher Ndeb912edff55422b949066ff29d67cc3
47 schema:url https://link.springer.com/10.1134%2FS002449021806007X
48 sgo:license sg:explorer/license/
49 sgo:sdDataset articles
50 rdf:type schema:ScholarlyArticle
51 N43c05c55d4dc4ba0bcc8fce3c4582b92 schema:issueNumber 6
52 rdf:type schema:PublicationIssue
53 N6fd3c76401084b6993d7191a20e9fe4b schema:volumeNumber 53
54 rdf:type schema:PublicationVolume
55 Na04973fe0c704e95a03d94eb9cd4514b rdf:first sg:person.014473760566.83
56 rdf:rest rdf:nil
57 Na35fab8e4a2645359b3c3b1887f71f1f schema:name dimensions_id
58 schema:value pub.1108054896
59 rdf:type schema:PropertyValue
60 Nc044a5f5ca3d428bb5a44165e5ddb386 schema:name doi
61 schema:value 10.1134/s002449021806007x
62 rdf:type schema:PropertyValue
63 Nce0ddcaccd9040559a10c7a6b32f9698 schema:name readcube_id
64 schema:value 43ba2311afce3bcfeb148326afa7f119c29e583e79e7d621d2cb5210f2419fa5
65 rdf:type schema:PropertyValue
66 Ndeb912edff55422b949066ff29d67cc3 schema:name Springer Nature - SN SciGraph project
67 rdf:type schema:Organization
68 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
69 schema:name Mathematical Sciences
70 rdf:type schema:DefinedTerm
71 anzsrc-for:0104 schema:inDefinedTermSet anzsrc-for:
72 schema:name Statistics
73 rdf:type schema:DefinedTerm
74 sg:journal.1136705 schema:issn 0024-4902
75 1608-3229
76 schema:name Lithology and Mineral Resources
77 rdf:type schema:Periodical
78 sg:person.014473760566.83 schema:affiliation https://www.grid.ac/institutes/grid.4886.2
79 schema:familyName Nedumov
80 schema:givenName R. I.
81 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014473760566.83
82 rdf:type schema:Person
83 sg:pub.10.1007/bf00207513 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014634392
84 https://doi.org/10.1007/bf00207513
85 rdf:type schema:CreativeWork
86 sg:pub.10.1007/bf00373306 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034794185
87 https://doi.org/10.1007/bf00373306
88 rdf:type schema:CreativeWork
89 sg:pub.10.1038/2131218a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044760999
90 https://doi.org/10.1038/2131218a0
91 rdf:type schema:CreativeWork
92 sg:pub.10.1038/292233a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044696825
93 https://doi.org/10.1038/292233a0
94 rdf:type schema:CreativeWork
95 sg:pub.10.1134/s1819714009010047 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039393616
96 https://doi.org/10.1134/s1819714009010047
97 rdf:type schema:CreativeWork
98 https://doi.org/10.1016/0011-7471(69)90003-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1054543083
99 rdf:type schema:CreativeWork
100 https://doi.org/10.1016/0016-7037(67)90059-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044032009
101 rdf:type schema:CreativeWork
102 https://doi.org/10.1016/0025-3227(82)90058-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001552740
103 rdf:type schema:CreativeWork
104 https://doi.org/10.1016/0025-3227(85)90150-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023829290
105 rdf:type schema:CreativeWork
106 https://doi.org/10.1016/j.jseaes.2007.03.003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014412641
107 rdf:type schema:CreativeWork
108 https://doi.org/10.1016/j.jseaes.2010.10.010 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043998345
109 rdf:type schema:CreativeWork
110 https://doi.org/10.1080/00288306.1967.10423222 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015037931
111 rdf:type schema:CreativeWork
112 https://doi.org/10.1080/01621459.1963.10500845 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058299788
113 rdf:type schema:CreativeWork
114 https://doi.org/10.1080/11035895509455349 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034331769
115 rdf:type schema:CreativeWork
116 https://doi.org/10.1086/626161 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058821943
117 rdf:type schema:CreativeWork
118 https://doi.org/10.1126/science.154.3749.643 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062489860
119 rdf:type schema:CreativeWork
120 https://doi.org/10.1126/science.162.3858.1123 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062495836
121 rdf:type schema:CreativeWork
122 https://doi.org/10.1126/science.166.3905.604 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062498224
123 rdf:type schema:CreativeWork
124 https://doi.org/10.1130/0016-7606(1971)82[101:fwinil]2.0.co;2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048788026
125 rdf:type schema:CreativeWork
126 https://doi.org/10.2113/gsecongeo.58.1.1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1068929213
127 rdf:type schema:CreativeWork
128 https://doi.org/10.2113/gssajg.110.2-3.295 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042681529
129 rdf:type schema:CreativeWork
130 https://doi.org/10.2307/2346830 schema:sameAs https://app.dimensions.ai/details/publication/pub.1101982469
131 rdf:type schema:CreativeWork
132 https://doi.org/10.4319/lo.1965.10.2.0268 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037018710
133 rdf:type schema:CreativeWork
134 https://doi.org/10.4319/lo.1970.15.5.0702 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036922452
135 rdf:type schema:CreativeWork
136 https://www.grid.ac/institutes/grid.4886.2 schema:alternateName Russian Academy of Sciences
137 schema:name Geological Institute, Russian Academy of Sciences, Pyzhevskii per. 7, 119017, Moscow, Russia
138 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...