Synthesis of Dimethyl Ether from Syngas on the Catalysts with the ZSM-5 Zeolites View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2018-11

AUTHORS

M. A. Kipnis, I. A. Belostotskii, E. A. Volnina, G. I. Lin, I. I. Marshev

ABSTRACT

Several bifunctional catalysts for dimethyl ether (DME) synthesis from syngas are prepared on the basis of commercial methanol-synthesis Megamax 507 catalyst. Commercial HZSM-5 zeolites with a SiО2/Al2О3 ratios of 23, 80, and 307 and γ-alumina were used as dehydration components. Physicochemical characteristics of zeolites and alumina are studied: temperature-programmed desorption of ammonia, the porosity, and the specific surface area. The activity of catalyst in DME synthesis is studied in a microcatalytic flow-type setup at a pressure of 3 MPa in a temperature range of 200–260°С with a productivity based on syngas of up to 30000 L h–1. The composition of syngas was (vol %): CO, 21; CO2, 6; Н2, 67; N2, 6 . It is shown that zeolites, especially with silica/alumina ratios of 23 and 80, are more active than alumina in methanol dehydration to DME, but in the presence of these zeolites, traces of hydrocarbons were detected at 260°С. The zeolite with a silica/alumina ratio of 307 is the most interesting of the studied zeolites. Hydrocarbons are almost not formed on it, and its activity in methanol dehydration is somewhat higher than that of alumina. The behavior of the methanol-synthesis component of the bifunctional catalyst is studied: the apparent activation energy of methanol synthesis and the degree of approaching to equilibrium are estimated depending on the catalyst load. More... »

PAGES

754-765

References to SciGraph publications

Journal

TITLE

Kinetics and Catalysis

ISSUE

6

VOLUME

59

Author Affiliations

From Grant

  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1134/s0023158418060071

    DOI

    http://dx.doi.org/10.1134/s0023158418060071

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1112526849


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0306", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Physical Chemistry (incl. Structural)", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/03", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Chemical Sciences", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Russian Academy of Sciences", 
              "id": "https://www.grid.ac/institutes/grid.4886.2", 
              "name": [
                "Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences, 119991, Moscow, Russia"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Kipnis", 
            "givenName": "M. A.", 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Russian Academy of Sciences", 
              "id": "https://www.grid.ac/institutes/grid.4886.2", 
              "name": [
                "Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences, 119991, Moscow, Russia"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Belostotskii", 
            "givenName": "I. A.", 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Russian Academy of Sciences", 
              "id": "https://www.grid.ac/institutes/grid.4886.2", 
              "name": [
                "Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences, 119991, Moscow, Russia"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Volnina", 
            "givenName": "E. A.", 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Russian Academy of Sciences", 
              "id": "https://www.grid.ac/institutes/grid.4886.2", 
              "name": [
                "Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences, 119991, Moscow, Russia"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Lin", 
            "givenName": "G. I.", 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Russian Academy of Sciences", 
              "id": "https://www.grid.ac/institutes/grid.4886.2", 
              "name": [
                "Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences, 119991, Moscow, Russia"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Marshev", 
            "givenName": "I. I.", 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "https://doi.org/10.1016/j.fuel.2015.02.056", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1006269863"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.enconman.2009.12.022", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1007014934"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.jcat.2004.12.007", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1007565087"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.pecs.2013.06.003", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1009019372"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1021/cs3006583", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1010033925"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/bbb.1611", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1010260455"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.fuel.2011.12.048", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1012603848"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.energy.2012.11.041", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1014048628"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.cattod.2013.01.012", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1014550393"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.jcat.2016.02.025", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1014873934"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.cattod.2011.06.034", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1015406343"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.fuproc.2013.01.002", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1022138581"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.apcatb.2015.03.006", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1023051377"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.renene.2009.08.002", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1023988944"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1134/s0036024413050129", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1027357880", 
              "https://doi.org/10.1134/s0036024413050129"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.cattod.2004.12.007", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1028470336"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1023/a:1023555415577", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1031047516", 
              "https://doi.org/10.1023/a:1023555415577"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1351/pac200476091735", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1034097050"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.cattod.2015.09.024", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1034463018"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.cej.2012.07.011", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1038952829"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.cattod.2011.04.049", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1043304625"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.fuproc.2011.03.007", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1048017632"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1080/00986449108939946", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1049140677"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.apenergy.2013.03.015", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1051050043"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0009-2509(91)85150-v", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1052515883"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1021/ie3024643", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1055606280"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.7868/s0028242115020112", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1074094193"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.7868/s0028242115050068", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1074094224"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.7868/s0028242116060162", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1074094331"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10562-017-1971-2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1083920448", 
              "https://doi.org/10.1007/s10562-017-1971-2"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10562-017-1971-2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1083920448", 
              "https://doi.org/10.1007/s10562-017-1971-2"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.apcatb.2017.05.085", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1085914970"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2018-11", 
        "datePublishedReg": "2018-11-01", 
        "description": "Several bifunctional catalysts for dimethyl ether (DME) synthesis from syngas are prepared on the basis of commercial methanol-synthesis Megamax 507 catalyst. Commercial HZSM-5 zeolites with a Si\u041e2/Al2\u041e3 ratios of 23, 80, and 307 and \u03b3-alumina were used as dehydration components. Physicochemical characteristics of zeolites and alumina are studied: temperature-programmed desorption of ammonia, the porosity, and the specific surface area. The activity of catalyst in DME synthesis is studied in a microcatalytic flow-type setup at a pressure of 3 MPa in a temperature range of 200\u2013260\u00b0\u0421 with a productivity based on syngas of up to 30000 L h\u20131. The composition of syngas was (vol %): CO, 21; CO2, 6; \u041d2, 67; N2, 6 . It is shown that zeolites, especially with silica/alumina ratios of 23 and 80, are more active than alumina in methanol dehydration to DME, but in the presence of these zeolites, traces of hydrocarbons were detected at 260\u00b0\u0421. The zeolite with a silica/alumina ratio of 307 is the most interesting of the studied zeolites. Hydrocarbons are almost not formed on it, and its activity in methanol dehydration is somewhat higher than that of alumina. The behavior of the methanol-synthesis component of the bifunctional catalyst is studied: the apparent activation energy of methanol synthesis and the degree of approaching to equilibrium are estimated depending on the catalyst load.", 
        "genre": "research_article", 
        "id": "sg:pub.10.1134/s0023158418060071", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": false, 
        "isFundedItemOf": [
          {
            "id": "sg:grant.6959254", 
            "type": "MonetaryGrant"
          }
        ], 
        "isPartOf": [
          {
            "id": "sg:journal.1136331", 
            "issn": [
              "0023-1584", 
              "0453-8811"
            ], 
            "name": "Kinetics and Catalysis", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "6", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "59"
          }
        ], 
        "name": "Synthesis of Dimethyl Ether from Syngas on the Catalysts with the ZSM-5 Zeolites", 
        "pagination": "754-765", 
        "productId": [
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "12f5f2668afc2b92d9edc5c97ca36394be1408fe710e0b596010a92e4ad634b7"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1134/s0023158418060071"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1112526849"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1134/s0023158418060071", 
          "https://app.dimensions.ai/details/publication/pub.1112526849"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-11T11:05", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000352_0000000352/records_60367_00000004.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://link.springer.com/10.1134%2FS0023158418060071"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1134/s0023158418060071'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1134/s0023158418060071'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1134/s0023158418060071'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1134/s0023158418060071'


     

    This table displays all metadata directly associated to this object as RDF triples.

    182 TRIPLES      21 PREDICATES      58 URIs      19 LITERALS      7 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1134/s0023158418060071 schema:about anzsrc-for:03
    2 anzsrc-for:0306
    3 schema:author N8b213b67d0a5434ca55717be4d923bce
    4 schema:citation sg:pub.10.1007/s10562-017-1971-2
    5 sg:pub.10.1023/a:1023555415577
    6 sg:pub.10.1134/s0036024413050129
    7 https://doi.org/10.1002/bbb.1611
    8 https://doi.org/10.1016/0009-2509(91)85150-v
    9 https://doi.org/10.1016/j.apcatb.2015.03.006
    10 https://doi.org/10.1016/j.apcatb.2017.05.085
    11 https://doi.org/10.1016/j.apenergy.2013.03.015
    12 https://doi.org/10.1016/j.cattod.2004.12.007
    13 https://doi.org/10.1016/j.cattod.2011.04.049
    14 https://doi.org/10.1016/j.cattod.2011.06.034
    15 https://doi.org/10.1016/j.cattod.2013.01.012
    16 https://doi.org/10.1016/j.cattod.2015.09.024
    17 https://doi.org/10.1016/j.cej.2012.07.011
    18 https://doi.org/10.1016/j.enconman.2009.12.022
    19 https://doi.org/10.1016/j.energy.2012.11.041
    20 https://doi.org/10.1016/j.fuel.2011.12.048
    21 https://doi.org/10.1016/j.fuel.2015.02.056
    22 https://doi.org/10.1016/j.fuproc.2011.03.007
    23 https://doi.org/10.1016/j.fuproc.2013.01.002
    24 https://doi.org/10.1016/j.jcat.2004.12.007
    25 https://doi.org/10.1016/j.jcat.2016.02.025
    26 https://doi.org/10.1016/j.pecs.2013.06.003
    27 https://doi.org/10.1016/j.renene.2009.08.002
    28 https://doi.org/10.1021/cs3006583
    29 https://doi.org/10.1021/ie3024643
    30 https://doi.org/10.1080/00986449108939946
    31 https://doi.org/10.1351/pac200476091735
    32 https://doi.org/10.7868/s0028242115020112
    33 https://doi.org/10.7868/s0028242115050068
    34 https://doi.org/10.7868/s0028242116060162
    35 schema:datePublished 2018-11
    36 schema:datePublishedReg 2018-11-01
    37 schema:description Several bifunctional catalysts for dimethyl ether (DME) synthesis from syngas are prepared on the basis of commercial methanol-synthesis Megamax 507 catalyst. Commercial HZSM-5 zeolites with a SiО2/Al2О3 ratios of 23, 80, and 307 and γ-alumina were used as dehydration components. Physicochemical characteristics of zeolites and alumina are studied: temperature-programmed desorption of ammonia, the porosity, and the specific surface area. The activity of catalyst in DME synthesis is studied in a microcatalytic flow-type setup at a pressure of 3 MPa in a temperature range of 200–260°С with a productivity based on syngas of up to 30000 L h–1. The composition of syngas was (vol %): CO, 21; CO2, 6; Н2, 67; N2, 6 . It is shown that zeolites, especially with silica/alumina ratios of 23 and 80, are more active than alumina in methanol dehydration to DME, but in the presence of these zeolites, traces of hydrocarbons were detected at 260°С. The zeolite with a silica/alumina ratio of 307 is the most interesting of the studied zeolites. Hydrocarbons are almost not formed on it, and its activity in methanol dehydration is somewhat higher than that of alumina. The behavior of the methanol-synthesis component of the bifunctional catalyst is studied: the apparent activation energy of methanol synthesis and the degree of approaching to equilibrium are estimated depending on the catalyst load.
    38 schema:genre research_article
    39 schema:inLanguage en
    40 schema:isAccessibleForFree false
    41 schema:isPartOf N1654ca5b0eaa4f8cb77f7bbc4873ae52
    42 Nb52d65a493ad458ab9e2e23d948f7004
    43 sg:journal.1136331
    44 schema:name Synthesis of Dimethyl Ether from Syngas on the Catalysts with the ZSM-5 Zeolites
    45 schema:pagination 754-765
    46 schema:productId N624173df07114f79b9219436739577c8
    47 N8482e95aca624f92bcc9ad174e7991ce
    48 Ndf48d7f44669494bb5785a22af7ce02b
    49 schema:sameAs https://app.dimensions.ai/details/publication/pub.1112526849
    50 https://doi.org/10.1134/s0023158418060071
    51 schema:sdDatePublished 2019-04-11T11:05
    52 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    53 schema:sdPublisher Nb4f1b1a7b75741b99599be3f69ec9af2
    54 schema:url https://link.springer.com/10.1134%2FS0023158418060071
    55 sgo:license sg:explorer/license/
    56 sgo:sdDataset articles
    57 rdf:type schema:ScholarlyArticle
    58 N0a7aa73edfa442edb8657893cc535942 schema:affiliation https://www.grid.ac/institutes/grid.4886.2
    59 schema:familyName Marshev
    60 schema:givenName I. I.
    61 rdf:type schema:Person
    62 N0f27ef4e959f4090b5b47420b0782753 rdf:first N0a7aa73edfa442edb8657893cc535942
    63 rdf:rest rdf:nil
    64 N1654ca5b0eaa4f8cb77f7bbc4873ae52 schema:issueNumber 6
    65 rdf:type schema:PublicationIssue
    66 N36d7fb8ae82e4827874f7f008b40ff7a schema:affiliation https://www.grid.ac/institutes/grid.4886.2
    67 schema:familyName Volnina
    68 schema:givenName E. A.
    69 rdf:type schema:Person
    70 N4d11e167d0b549fc9ee3f69eb00cfad0 schema:affiliation https://www.grid.ac/institutes/grid.4886.2
    71 schema:familyName Belostotskii
    72 schema:givenName I. A.
    73 rdf:type schema:Person
    74 N624173df07114f79b9219436739577c8 schema:name dimensions_id
    75 schema:value pub.1112526849
    76 rdf:type schema:PropertyValue
    77 N644da86ac84d4a8a88592afa1815e114 schema:affiliation https://www.grid.ac/institutes/grid.4886.2
    78 schema:familyName Lin
    79 schema:givenName G. I.
    80 rdf:type schema:Person
    81 N8482e95aca624f92bcc9ad174e7991ce schema:name doi
    82 schema:value 10.1134/s0023158418060071
    83 rdf:type schema:PropertyValue
    84 N8b213b67d0a5434ca55717be4d923bce rdf:first Ncd68ba6f3fa74318b012341cc05798cf
    85 rdf:rest Nc404c3bc77514f1695e266f7dd5c8a49
    86 N97ea2abf9331461086b8b30b4b599691 rdf:first N644da86ac84d4a8a88592afa1815e114
    87 rdf:rest N0f27ef4e959f4090b5b47420b0782753
    88 Nb4f1b1a7b75741b99599be3f69ec9af2 schema:name Springer Nature - SN SciGraph project
    89 rdf:type schema:Organization
    90 Nb50a850222444e6bb3f7fab884102f64 rdf:first N36d7fb8ae82e4827874f7f008b40ff7a
    91 rdf:rest N97ea2abf9331461086b8b30b4b599691
    92 Nb52d65a493ad458ab9e2e23d948f7004 schema:volumeNumber 59
    93 rdf:type schema:PublicationVolume
    94 Nc404c3bc77514f1695e266f7dd5c8a49 rdf:first N4d11e167d0b549fc9ee3f69eb00cfad0
    95 rdf:rest Nb50a850222444e6bb3f7fab884102f64
    96 Ncd68ba6f3fa74318b012341cc05798cf schema:affiliation https://www.grid.ac/institutes/grid.4886.2
    97 schema:familyName Kipnis
    98 schema:givenName M. A.
    99 rdf:type schema:Person
    100 Ndf48d7f44669494bb5785a22af7ce02b schema:name readcube_id
    101 schema:value 12f5f2668afc2b92d9edc5c97ca36394be1408fe710e0b596010a92e4ad634b7
    102 rdf:type schema:PropertyValue
    103 anzsrc-for:03 schema:inDefinedTermSet anzsrc-for:
    104 schema:name Chemical Sciences
    105 rdf:type schema:DefinedTerm
    106 anzsrc-for:0306 schema:inDefinedTermSet anzsrc-for:
    107 schema:name Physical Chemistry (incl. Structural)
    108 rdf:type schema:DefinedTerm
    109 sg:grant.6959254 http://pending.schema.org/fundedItem sg:pub.10.1134/s0023158418060071
    110 rdf:type schema:MonetaryGrant
    111 sg:journal.1136331 schema:issn 0023-1584
    112 0453-8811
    113 schema:name Kinetics and Catalysis
    114 rdf:type schema:Periodical
    115 sg:pub.10.1007/s10562-017-1971-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1083920448
    116 https://doi.org/10.1007/s10562-017-1971-2
    117 rdf:type schema:CreativeWork
    118 sg:pub.10.1023/a:1023555415577 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031047516
    119 https://doi.org/10.1023/a:1023555415577
    120 rdf:type schema:CreativeWork
    121 sg:pub.10.1134/s0036024413050129 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027357880
    122 https://doi.org/10.1134/s0036024413050129
    123 rdf:type schema:CreativeWork
    124 https://doi.org/10.1002/bbb.1611 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010260455
    125 rdf:type schema:CreativeWork
    126 https://doi.org/10.1016/0009-2509(91)85150-v schema:sameAs https://app.dimensions.ai/details/publication/pub.1052515883
    127 rdf:type schema:CreativeWork
    128 https://doi.org/10.1016/j.apcatb.2015.03.006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023051377
    129 rdf:type schema:CreativeWork
    130 https://doi.org/10.1016/j.apcatb.2017.05.085 schema:sameAs https://app.dimensions.ai/details/publication/pub.1085914970
    131 rdf:type schema:CreativeWork
    132 https://doi.org/10.1016/j.apenergy.2013.03.015 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051050043
    133 rdf:type schema:CreativeWork
    134 https://doi.org/10.1016/j.cattod.2004.12.007 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028470336
    135 rdf:type schema:CreativeWork
    136 https://doi.org/10.1016/j.cattod.2011.04.049 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043304625
    137 rdf:type schema:CreativeWork
    138 https://doi.org/10.1016/j.cattod.2011.06.034 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015406343
    139 rdf:type schema:CreativeWork
    140 https://doi.org/10.1016/j.cattod.2013.01.012 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014550393
    141 rdf:type schema:CreativeWork
    142 https://doi.org/10.1016/j.cattod.2015.09.024 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034463018
    143 rdf:type schema:CreativeWork
    144 https://doi.org/10.1016/j.cej.2012.07.011 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038952829
    145 rdf:type schema:CreativeWork
    146 https://doi.org/10.1016/j.enconman.2009.12.022 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007014934
    147 rdf:type schema:CreativeWork
    148 https://doi.org/10.1016/j.energy.2012.11.041 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014048628
    149 rdf:type schema:CreativeWork
    150 https://doi.org/10.1016/j.fuel.2011.12.048 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012603848
    151 rdf:type schema:CreativeWork
    152 https://doi.org/10.1016/j.fuel.2015.02.056 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006269863
    153 rdf:type schema:CreativeWork
    154 https://doi.org/10.1016/j.fuproc.2011.03.007 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048017632
    155 rdf:type schema:CreativeWork
    156 https://doi.org/10.1016/j.fuproc.2013.01.002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022138581
    157 rdf:type schema:CreativeWork
    158 https://doi.org/10.1016/j.jcat.2004.12.007 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007565087
    159 rdf:type schema:CreativeWork
    160 https://doi.org/10.1016/j.jcat.2016.02.025 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014873934
    161 rdf:type schema:CreativeWork
    162 https://doi.org/10.1016/j.pecs.2013.06.003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009019372
    163 rdf:type schema:CreativeWork
    164 https://doi.org/10.1016/j.renene.2009.08.002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023988944
    165 rdf:type schema:CreativeWork
    166 https://doi.org/10.1021/cs3006583 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010033925
    167 rdf:type schema:CreativeWork
    168 https://doi.org/10.1021/ie3024643 schema:sameAs https://app.dimensions.ai/details/publication/pub.1055606280
    169 rdf:type schema:CreativeWork
    170 https://doi.org/10.1080/00986449108939946 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049140677
    171 rdf:type schema:CreativeWork
    172 https://doi.org/10.1351/pac200476091735 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034097050
    173 rdf:type schema:CreativeWork
    174 https://doi.org/10.7868/s0028242115020112 schema:sameAs https://app.dimensions.ai/details/publication/pub.1074094193
    175 rdf:type schema:CreativeWork
    176 https://doi.org/10.7868/s0028242115050068 schema:sameAs https://app.dimensions.ai/details/publication/pub.1074094224
    177 rdf:type schema:CreativeWork
    178 https://doi.org/10.7868/s0028242116060162 schema:sameAs https://app.dimensions.ai/details/publication/pub.1074094331
    179 rdf:type schema:CreativeWork
    180 https://www.grid.ac/institutes/grid.4886.2 schema:alternateName Russian Academy of Sciences
    181 schema:name Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences, 119991, Moscow, Russia
    182 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...