Influence of the composition and morphology of nanosized transition metal sulfides prepared using the Anderson-type heteropoly compounds [X(OH)6Mo6O18]n− (X = ... View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2012-09-27

AUTHORS

P. A. Nikul’shin, A. V. Mozhaev, D. I. Ishutenko, P. P. Minaev, A. I. Lyashenko, A. A. Pimerzin

ABSTRACT

Using the Anderson-type heteropoly compounds (HPCs) [X(OH)6Mo6O18]n− (X = Co, Ni, Mn, Zn) and [Co2Mo10O38H4]6− and cobalt (or nickel) nitrate, XMo/Al2O3 and Co(Ni)-XMo/Al2O3 catalysts were prepared. The catalysts were studied by low-temperature nitrogen adsorption, X-ray diffraction, and high-resolution transmission electron microscopy. The average length of the active-phase particles of the catalysts was 3.5 to 3.9 nm, and the average number of MoS2 layers in a packet was 1.4 to 2.1. The catalytic properties of the samples, which were estimated in dibenzothiophene (DBT) hydrodesulfurization and in the hydrotreating of the diesel fraction, are considerably dependent upon both the type and composition of the HPC, and the nature of the applied promoter (Ni or Co). As compared to the Ni-promoted catalysts, the Co-promoted samples exhibit a higher desulfurization activity, whereas the hydrogenation ability of the Ni-XMo/Al2O3 catalysts surpasses that of the Co-XMo/Al2O3 ones. The catalytic properties depend on the morphology of the nanostructured active phase. With a growing number of MoS2 layers in the packet of the catalysts’ active phase, the DBT hydrodesulfurization rate constants for both the direct desulfurization route and the preliminary hydrogenation rote rise linearly and the selectivity falls linearly for the hydrogenation route. The selectivity of Ni-XMo/Al2O3 decreases to a greater extent than that of Co-XMo/Al2O3. The dependences of the catalytic properties on the morphology of the catalysts’ active phase are consistent with the “dynamic” model of the functioning of the active sites of transition metal sulfides. More... »

PAGES

620-631

Identifiers

URI

http://scigraph.springernature.com/pub.10.1134/s0023158412050114

DOI

http://dx.doi.org/10.1134/s0023158412050114

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1008321138


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/03", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Chemical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0302", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Inorganic Chemistry", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0306", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Chemistry (incl. Structural)", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0399", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Other Chemical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Samara State Technical University, 443010, Samara, Russia", 
          "id": "http://www.grid.ac/institutes/grid.445792.9", 
          "name": [
            "Samara State Technical University, 443010, Samara, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Nikul\u2019shin", 
        "givenName": "P. A.", 
        "id": "sg:person.010624064021.26", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010624064021.26"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Samara State Technical University, 443010, Samara, Russia", 
          "id": "http://www.grid.ac/institutes/grid.445792.9", 
          "name": [
            "Samara State Technical University, 443010, Samara, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Mozhaev", 
        "givenName": "A. V.", 
        "id": "sg:person.011410771267.11", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011410771267.11"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Samara State Technical University, 443010, Samara, Russia", 
          "id": "http://www.grid.ac/institutes/grid.445792.9", 
          "name": [
            "Samara State Technical University, 443010, Samara, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ishutenko", 
        "givenName": "D. I.", 
        "id": "sg:person.014725317377.13", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014725317377.13"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Samara State Technical University, 443010, Samara, Russia", 
          "id": "http://www.grid.ac/institutes/grid.445792.9", 
          "name": [
            "Samara State Technical University, 443010, Samara, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Minaev", 
        "givenName": "P. P.", 
        "id": "sg:person.011014211572.50", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011014211572.50"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Samara State Technical University, 443010, Samara, Russia", 
          "id": "http://www.grid.ac/institutes/grid.445792.9", 
          "name": [
            "Samara State Technical University, 443010, Samara, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Lyashenko", 
        "givenName": "A. I.", 
        "id": "sg:person.012427527427.30", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012427527427.30"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Samara State Technical University, 443010, Samara, Russia", 
          "id": "http://www.grid.ac/institutes/grid.445792.9", 
          "name": [
            "Samara State Technical University, 443010, Samara, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Pimerzin", 
        "givenName": "A. A.", 
        "id": "sg:person.011350646761.09", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011350646761.09"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1023/b:catl.0000011090.71716.6e", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040228229", 
          "https://doi.org/10.1023/b:catl.0000011090.71716.6e"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1134/s0965544108020035", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006724561", 
          "https://doi.org/10.1134/s0965544108020035"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1023/a:1021024617582", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029142039", 
          "https://doi.org/10.1023/a:1021024617582"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1134/s0023158407060146", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045616810", 
          "https://doi.org/10.1134/s0023158407060146"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1023/b:kica.0000009059.80675.4e", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056311987", 
          "https://doi.org/10.1023/b:kica.0000009059.80675.4e"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1134/s0023158410030109", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036080643", 
          "https://doi.org/10.1134/s0023158410030109"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1134/s0023158409060111", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007739015", 
          "https://doi.org/10.1134/s0023158409060111"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10562-006-0204-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051328231", 
          "https://doi.org/10.1007/s10562-006-0204-x"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2012-09-27", 
    "datePublishedReg": "2012-09-27", 
    "description": "Using the Anderson-type heteropoly compounds (HPCs) [X(OH)6Mo6O18]n\u2212 (X = Co, Ni, Mn, Zn) and [Co2Mo10O38H4]6\u2212 and cobalt (or nickel) nitrate, XMo/Al2O3 and Co(Ni)-XMo/Al2O3 catalysts were prepared. The catalysts were studied by low-temperature nitrogen adsorption, X-ray diffraction, and high-resolution transmission electron microscopy. The average length of the active-phase particles of the catalysts was 3.5 to 3.9 nm, and the average number of MoS2 layers in a packet was 1.4 to 2.1. The catalytic properties of the samples, which were estimated in dibenzothiophene (DBT) hydrodesulfurization and in the hydrotreating of the diesel fraction, are considerably dependent upon both the type and composition of the HPC, and the nature of the applied promoter (Ni or Co). As compared to the Ni-promoted catalysts, the Co-promoted samples exhibit a higher desulfurization activity, whereas the hydrogenation ability of the Ni-XMo/Al2O3 catalysts surpasses that of the Co-XMo/Al2O3 ones. The catalytic properties depend on the morphology of the nanostructured active phase. With a growing number of MoS2 layers in the packet of the catalysts\u2019 active phase, the DBT hydrodesulfurization rate constants for both the direct desulfurization route and the preliminary hydrogenation rote rise linearly and the selectivity falls linearly for the hydrogenation route. The selectivity of Ni-XMo/Al2O3 decreases to a greater extent than that of Co-XMo/Al2O3. The dependences of the catalytic properties on the morphology of the catalysts\u2019 active phase are consistent with the \u201cdynamic\u201d model of the functioning of the active sites of transition metal sulfides.", 
    "genre": "article", 
    "id": "sg:pub.10.1134/s0023158412050114", 
    "inLanguage": "en", 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1136331", 
        "issn": [
          "0023-1584", 
          "0453-8811"
        ], 
        "name": "Kinetics and Catalysis", 
        "publisher": "Pleiades Publishing", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "5", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "53"
      }
    ], 
    "keywords": [
      "Anderson-type heteropoly compounds", 
      "transition metal sulfides", 
      "heteropoly compounds", 
      "catalytic properties", 
      "Al2O3 catalyst", 
      "metal sulfides", 
      "low-temperature nitrogen adsorption", 
      "active-phase particles", 
      "direct desulfurization route", 
      "MoS2 layers", 
      "active phase", 
      "high-resolution transmission electron microscopy", 
      "nitrogen adsorption", 
      "hydrogenation route", 
      "high desulfurization activity", 
      "dibenzothiophene hydrodesulfurization", 
      "hydrogenation ability", 
      "cobalt nitrate", 
      "catalyst", 
      "preliminary hydrogenation", 
      "transmission electron microscopy", 
      "ray diffraction", 
      "Al2O3 one", 
      "diesel fraction", 
      "desulfurization activity", 
      "active site", 
      "rate constants", 
      "electron microscopy", 
      "Al2O3", 
      "selectivity", 
      "sulfide", 
      "compounds", 
      "properties", 
      "morphology", 
      "hydrodesulfurization", 
      "route", 
      "adsorption", 
      "hydrotreating", 
      "hydrogenation", 
      "diffraction", 
      "phase", 
      "composition", 
      "layer", 
      "microscopy", 
      "nitrate", 
      "Ni", 
      "constants", 
      "particles", 
      "samples", 
      "greater extent", 
      "dependence", 
      "nature", 
      "fraction", 
      "sites", 
      "influence", 
      "average length", 
      "activity", 
      "length", 
      "ability", 
      "types", 
      "one", 
      "extent", 
      "average number", 
      "rise", 
      "number", 
      "model", 
      "promoter", 
      "functioning", 
      "packets", 
      "XMo/Al2O3", 
      "Co-promoted samples", 
      "Ni-XMo/Al2O3 catalysts", 
      "Co-XMo/Al2O3 ones", 
      "DBT hydrodesulfurization rate constants", 
      "hydrodesulfurization rate constants", 
      "desulfurization route", 
      "Ni-XMo/Al2O3", 
      "Co-XMo/Al2O3"
    ], 
    "name": "Influence of the composition and morphology of nanosized transition metal sulfides prepared using the Anderson-type heteropoly compounds [X(OH)6Mo6O18]n\u2212 (X = Co, Ni, Mn, Zn) and [Co2Mo10O38H4]6\u2212 on their catalytic properties", 
    "pagination": "620-631", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1008321138"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1134/s0023158412050114"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1134/s0023158412050114", 
      "https://app.dimensions.ai/details/publication/pub.1008321138"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-01-01T18:29", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220101/entities/gbq_results/article/article_574.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1134/s0023158412050114"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1134/s0023158412050114'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1134/s0023158412050114'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1134/s0023158412050114'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1134/s0023158412050114'


 

This table displays all metadata directly associated to this object as RDF triples.

211 TRIPLES      22 PREDICATES      113 URIs      95 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1134/s0023158412050114 schema:about anzsrc-for:03
2 anzsrc-for:0302
3 anzsrc-for:0306
4 anzsrc-for:0399
5 schema:author Nb8db17ecb2f74d1ba1395fb7a3058d00
6 schema:citation sg:pub.10.1007/s10562-006-0204-x
7 sg:pub.10.1023/a:1021024617582
8 sg:pub.10.1023/b:catl.0000011090.71716.6e
9 sg:pub.10.1023/b:kica.0000009059.80675.4e
10 sg:pub.10.1134/s0023158407060146
11 sg:pub.10.1134/s0023158409060111
12 sg:pub.10.1134/s0023158410030109
13 sg:pub.10.1134/s0965544108020035
14 schema:datePublished 2012-09-27
15 schema:datePublishedReg 2012-09-27
16 schema:description Using the Anderson-type heteropoly compounds (HPCs) [X(OH)6Mo6O18]n− (X = Co, Ni, Mn, Zn) and [Co2Mo10O38H4]6− and cobalt (or nickel) nitrate, XMo/Al2O3 and Co(Ni)-XMo/Al2O3 catalysts were prepared. The catalysts were studied by low-temperature nitrogen adsorption, X-ray diffraction, and high-resolution transmission electron microscopy. The average length of the active-phase particles of the catalysts was 3.5 to 3.9 nm, and the average number of MoS2 layers in a packet was 1.4 to 2.1. The catalytic properties of the samples, which were estimated in dibenzothiophene (DBT) hydrodesulfurization and in the hydrotreating of the diesel fraction, are considerably dependent upon both the type and composition of the HPC, and the nature of the applied promoter (Ni or Co). As compared to the Ni-promoted catalysts, the Co-promoted samples exhibit a higher desulfurization activity, whereas the hydrogenation ability of the Ni-XMo/Al2O3 catalysts surpasses that of the Co-XMo/Al2O3 ones. The catalytic properties depend on the morphology of the nanostructured active phase. With a growing number of MoS2 layers in the packet of the catalysts’ active phase, the DBT hydrodesulfurization rate constants for both the direct desulfurization route and the preliminary hydrogenation rote rise linearly and the selectivity falls linearly for the hydrogenation route. The selectivity of Ni-XMo/Al2O3 decreases to a greater extent than that of Co-XMo/Al2O3. The dependences of the catalytic properties on the morphology of the catalysts’ active phase are consistent with the “dynamic” model of the functioning of the active sites of transition metal sulfides.
17 schema:genre article
18 schema:inLanguage en
19 schema:isAccessibleForFree false
20 schema:isPartOf N7e2dd1bd20a84e4ba3de7d86f199907b
21 N91fdc513fbde4b8fa40e94b449cb06f0
22 sg:journal.1136331
23 schema:keywords Al2O3
24 Al2O3 catalyst
25 Al2O3 one
26 Anderson-type heteropoly compounds
27 Co-XMo/Al2O3
28 Co-XMo/Al2O3 ones
29 Co-promoted samples
30 DBT hydrodesulfurization rate constants
31 MoS2 layers
32 Ni
33 Ni-XMo/Al2O3
34 Ni-XMo/Al2O3 catalysts
35 XMo/Al2O3
36 ability
37 active phase
38 active site
39 active-phase particles
40 activity
41 adsorption
42 average length
43 average number
44 catalyst
45 catalytic properties
46 cobalt nitrate
47 composition
48 compounds
49 constants
50 dependence
51 desulfurization activity
52 desulfurization route
53 dibenzothiophene hydrodesulfurization
54 diesel fraction
55 diffraction
56 direct desulfurization route
57 electron microscopy
58 extent
59 fraction
60 functioning
61 greater extent
62 heteropoly compounds
63 high desulfurization activity
64 high-resolution transmission electron microscopy
65 hydrodesulfurization
66 hydrodesulfurization rate constants
67 hydrogenation
68 hydrogenation ability
69 hydrogenation route
70 hydrotreating
71 influence
72 layer
73 length
74 low-temperature nitrogen adsorption
75 metal sulfides
76 microscopy
77 model
78 morphology
79 nature
80 nitrate
81 nitrogen adsorption
82 number
83 one
84 packets
85 particles
86 phase
87 preliminary hydrogenation
88 promoter
89 properties
90 rate constants
91 ray diffraction
92 rise
93 route
94 samples
95 selectivity
96 sites
97 sulfide
98 transition metal sulfides
99 transmission electron microscopy
100 types
101 schema:name Influence of the composition and morphology of nanosized transition metal sulfides prepared using the Anderson-type heteropoly compounds [X(OH)6Mo6O18]n− (X = Co, Ni, Mn, Zn) and [Co2Mo10O38H4]6− on their catalytic properties
102 schema:pagination 620-631
103 schema:productId N115c0b47cd2b4d72ad1472c758f129b2
104 N999c80fcaedc43a8862e10d5827b04cf
105 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008321138
106 https://doi.org/10.1134/s0023158412050114
107 schema:sdDatePublished 2022-01-01T18:29
108 schema:sdLicense https://scigraph.springernature.com/explorer/license/
109 schema:sdPublisher N1e2abb29ab944b2da8ed8f5ace7b386f
110 schema:url https://doi.org/10.1134/s0023158412050114
111 sgo:license sg:explorer/license/
112 sgo:sdDataset articles
113 rdf:type schema:ScholarlyArticle
114 N05a16feb7cf443bdb2cb869cbcee9e0f rdf:first sg:person.011014211572.50
115 rdf:rest Nc47a8b0164bd4f5c92610d24fc192c43
116 N115c0b47cd2b4d72ad1472c758f129b2 schema:name doi
117 schema:value 10.1134/s0023158412050114
118 rdf:type schema:PropertyValue
119 N1e2abb29ab944b2da8ed8f5ace7b386f schema:name Springer Nature - SN SciGraph project
120 rdf:type schema:Organization
121 N37fc3f00d6924c1e95d0d74db771e032 rdf:first sg:person.011410771267.11
122 rdf:rest Na7d33e9711a94712b6b9f44498d06a69
123 N68ca111cf63f43ffb38f07c107535537 rdf:first sg:person.011350646761.09
124 rdf:rest rdf:nil
125 N7e2dd1bd20a84e4ba3de7d86f199907b schema:volumeNumber 53
126 rdf:type schema:PublicationVolume
127 N91fdc513fbde4b8fa40e94b449cb06f0 schema:issueNumber 5
128 rdf:type schema:PublicationIssue
129 N999c80fcaedc43a8862e10d5827b04cf schema:name dimensions_id
130 schema:value pub.1008321138
131 rdf:type schema:PropertyValue
132 Na7d33e9711a94712b6b9f44498d06a69 rdf:first sg:person.014725317377.13
133 rdf:rest N05a16feb7cf443bdb2cb869cbcee9e0f
134 Nb8db17ecb2f74d1ba1395fb7a3058d00 rdf:first sg:person.010624064021.26
135 rdf:rest N37fc3f00d6924c1e95d0d74db771e032
136 Nc47a8b0164bd4f5c92610d24fc192c43 rdf:first sg:person.012427527427.30
137 rdf:rest N68ca111cf63f43ffb38f07c107535537
138 anzsrc-for:03 schema:inDefinedTermSet anzsrc-for:
139 schema:name Chemical Sciences
140 rdf:type schema:DefinedTerm
141 anzsrc-for:0302 schema:inDefinedTermSet anzsrc-for:
142 schema:name Inorganic Chemistry
143 rdf:type schema:DefinedTerm
144 anzsrc-for:0306 schema:inDefinedTermSet anzsrc-for:
145 schema:name Physical Chemistry (incl. Structural)
146 rdf:type schema:DefinedTerm
147 anzsrc-for:0399 schema:inDefinedTermSet anzsrc-for:
148 schema:name Other Chemical Sciences
149 rdf:type schema:DefinedTerm
150 sg:journal.1136331 schema:issn 0023-1584
151 0453-8811
152 schema:name Kinetics and Catalysis
153 schema:publisher Pleiades Publishing
154 rdf:type schema:Periodical
155 sg:person.010624064021.26 schema:affiliation grid-institutes:grid.445792.9
156 schema:familyName Nikul’shin
157 schema:givenName P. A.
158 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010624064021.26
159 rdf:type schema:Person
160 sg:person.011014211572.50 schema:affiliation grid-institutes:grid.445792.9
161 schema:familyName Minaev
162 schema:givenName P. P.
163 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011014211572.50
164 rdf:type schema:Person
165 sg:person.011350646761.09 schema:affiliation grid-institutes:grid.445792.9
166 schema:familyName Pimerzin
167 schema:givenName A. A.
168 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011350646761.09
169 rdf:type schema:Person
170 sg:person.011410771267.11 schema:affiliation grid-institutes:grid.445792.9
171 schema:familyName Mozhaev
172 schema:givenName A. V.
173 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011410771267.11
174 rdf:type schema:Person
175 sg:person.012427527427.30 schema:affiliation grid-institutes:grid.445792.9
176 schema:familyName Lyashenko
177 schema:givenName A. I.
178 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012427527427.30
179 rdf:type schema:Person
180 sg:person.014725317377.13 schema:affiliation grid-institutes:grid.445792.9
181 schema:familyName Ishutenko
182 schema:givenName D. I.
183 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014725317377.13
184 rdf:type schema:Person
185 sg:pub.10.1007/s10562-006-0204-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1051328231
186 https://doi.org/10.1007/s10562-006-0204-x
187 rdf:type schema:CreativeWork
188 sg:pub.10.1023/a:1021024617582 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029142039
189 https://doi.org/10.1023/a:1021024617582
190 rdf:type schema:CreativeWork
191 sg:pub.10.1023/b:catl.0000011090.71716.6e schema:sameAs https://app.dimensions.ai/details/publication/pub.1040228229
192 https://doi.org/10.1023/b:catl.0000011090.71716.6e
193 rdf:type schema:CreativeWork
194 sg:pub.10.1023/b:kica.0000009059.80675.4e schema:sameAs https://app.dimensions.ai/details/publication/pub.1056311987
195 https://doi.org/10.1023/b:kica.0000009059.80675.4e
196 rdf:type schema:CreativeWork
197 sg:pub.10.1134/s0023158407060146 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045616810
198 https://doi.org/10.1134/s0023158407060146
199 rdf:type schema:CreativeWork
200 sg:pub.10.1134/s0023158409060111 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007739015
201 https://doi.org/10.1134/s0023158409060111
202 rdf:type schema:CreativeWork
203 sg:pub.10.1134/s0023158410030109 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036080643
204 https://doi.org/10.1134/s0023158410030109
205 rdf:type schema:CreativeWork
206 sg:pub.10.1134/s0965544108020035 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006724561
207 https://doi.org/10.1134/s0965544108020035
208 rdf:type schema:CreativeWork
209 grid-institutes:grid.445792.9 schema:alternateName Samara State Technical University, 443010, Samara, Russia
210 schema:name Samara State Technical University, 443010, Samara, Russia
211 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...