Formation of carbon nanoparticles by the condensation of supersaturated atomic vapor obtained by the laser photolysis of C3O2 View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2007-03

AUTHORS

E. V. Gurentsov, A. V. Eremin, C. Schulz

ABSTRACT

A new technique is suggested for obtaining nanoparticles from highly supersaturated vapor resulting from the laser photolysis of volatile compounds. The growth of carbon nanoparticles resulting from C3O2 photolysis has been studied in detail. Absorbing UV quanta (from an Ar-F excimer laser), C3O2 molecules decompose to yield atomic carbon vapor with precisely known and readily controllable parameters. This is followed by the condensation of supersaturated carbon vapor and the formation of carbon nanoparticles. These processes have been investigated by the laser extinction and laser-induced incandescence (LII) methods in wide ranges of experimental conditions (carbon vapor concentration, nature of the diluent gas, and gas pressure). The current and ultimate particle sizes and the kinetic parameters of particle growth have been determined. The characteristic time of particle growth ranges between 20 and 1000 μs, depending on photolysis conditions. The ultimate particle size determined by electron microscopy is 5–12 nm for all experimental conditions. It increases with increasing total gas pressure and carbon vapor partial pressure and depends on the diluent gas. The translational energy accommodation coefficients for the Ar, He, CO, and C3O2 molecules interacting with the carbon particle surface have been determined by comparing the LII and electron microscopic particle sizes. A simple model has been constructed to describe the condensation of carbon nanoparticles from supersaturated atomic vapor. According to this model, the main process in nanoparticle formation is surface growth through the addition of separate atoms to the nucleation cluster. The nucleus concentrations for various condensation parameters have been determined by comparing experimental and calculated data. More... »

PAGES

194-203

Identifiers

URI

http://scigraph.springernature.com/pub.10.1134/s0023158407020036

DOI

http://dx.doi.org/10.1134/s0023158407020036

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1009908373


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0306", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Chemistry (incl. Structural)", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/03", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Chemical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Russian Academy of Sciences", 
          "id": "https://www.grid.ac/institutes/grid.4886.2", 
          "name": [
            "Institute of Thermal Physics of Extreme States, Russian Academy of Sciences, 125412, Moscow, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Gurentsov", 
        "givenName": "E. V.", 
        "id": "sg:person.011227332131.89", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011227332131.89"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Russian Academy of Sciences", 
          "id": "https://www.grid.ac/institutes/grid.4886.2", 
          "name": [
            "Institute of Thermal Physics of Extreme States, Russian Academy of Sciences, 125412, Moscow, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Eremin", 
        "givenName": "A. V.", 
        "id": "sg:person.014424512265.37", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014424512265.37"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Institut f\u00fcr Verbrennung und Gasdynamik, 47048, Duisburg, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Schulz", 
        "givenName": "C.", 
        "id": "sg:person.01253455771.35", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01253455771.35"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/j.combustflame.2003.09.013", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000233993"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1524/zpch.217.11.1361.20483", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001027160"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0021-8502(95)00531-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005599521"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.proci.2004.07.034", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007322965"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1524/zpch.217.7.893.20396", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008552238"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0010-2180(99)00067-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014791379"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s1540-7489(02)80291-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015684593"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s003400050483", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016906203", 
          "https://doi.org/10.1007/s003400050483"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0360-1285(81)90001-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042616882"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00193-003-0178-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049045048", 
          "https://doi.org/10.1007/s00193-003-0178-1"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2007-03", 
    "datePublishedReg": "2007-03-01", 
    "description": "A new technique is suggested for obtaining nanoparticles from highly supersaturated vapor resulting from the laser photolysis of volatile compounds. The growth of carbon nanoparticles resulting from C3O2 photolysis has been studied in detail. Absorbing UV quanta (from an Ar-F excimer laser), C3O2 molecules decompose to yield atomic carbon vapor with precisely known and readily controllable parameters. This is followed by the condensation of supersaturated carbon vapor and the formation of carbon nanoparticles. These processes have been investigated by the laser extinction and laser-induced incandescence (LII) methods in wide ranges of experimental conditions (carbon vapor concentration, nature of the diluent gas, and gas pressure). The current and ultimate particle sizes and the kinetic parameters of particle growth have been determined. The characteristic time of particle growth ranges between 20 and 1000 \u03bcs, depending on photolysis conditions. The ultimate particle size determined by electron microscopy is 5\u201312 nm for all experimental conditions. It increases with increasing total gas pressure and carbon vapor partial pressure and depends on the diluent gas. The translational energy accommodation coefficients for the Ar, He, CO, and C3O2 molecules interacting with the carbon particle surface have been determined by comparing the LII and electron microscopic particle sizes. A simple model has been constructed to describe the condensation of carbon nanoparticles from supersaturated atomic vapor. According to this model, the main process in nanoparticle formation is surface growth through the addition of separate atoms to the nucleation cluster. The nucleus concentrations for various condensation parameters have been determined by comparing experimental and calculated data.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1134/s0023158407020036", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1136331", 
        "issn": [
          "0023-1584", 
          "0453-8811"
        ], 
        "name": "Kinetics and Catalysis", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "2", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "48"
      }
    ], 
    "name": "Formation of carbon nanoparticles by the condensation of supersaturated atomic vapor obtained by the laser photolysis of C3O2", 
    "pagination": "194-203", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "2f33f8f8bcb0a2214f0f7e6d32f392fe5affcd8da4c2df5c181aecbf57eeef39"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1134/s0023158407020036"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1009908373"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1134/s0023158407020036", 
      "https://app.dimensions.ai/details/publication/pub.1009908373"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T16:39", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8669_00000498.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1134/S0023158407020036"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1134/s0023158407020036'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1134/s0023158407020036'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1134/s0023158407020036'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1134/s0023158407020036'


 

This table displays all metadata directly associated to this object as RDF triples.

109 TRIPLES      21 PREDICATES      37 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1134/s0023158407020036 schema:about anzsrc-for:03
2 anzsrc-for:0306
3 schema:author Nf1302c63c7584f81a30e83195f87c6f0
4 schema:citation sg:pub.10.1007/s00193-003-0178-1
5 sg:pub.10.1007/s003400050483
6 https://doi.org/10.1016/0021-8502(95)00531-5
7 https://doi.org/10.1016/0360-1285(81)90001-0
8 https://doi.org/10.1016/j.combustflame.2003.09.013
9 https://doi.org/10.1016/j.proci.2004.07.034
10 https://doi.org/10.1016/s0010-2180(99)00067-x
11 https://doi.org/10.1016/s1540-7489(02)80291-7
12 https://doi.org/10.1524/zpch.217.11.1361.20483
13 https://doi.org/10.1524/zpch.217.7.893.20396
14 schema:datePublished 2007-03
15 schema:datePublishedReg 2007-03-01
16 schema:description A new technique is suggested for obtaining nanoparticles from highly supersaturated vapor resulting from the laser photolysis of volatile compounds. The growth of carbon nanoparticles resulting from C3O2 photolysis has been studied in detail. Absorbing UV quanta (from an Ar-F excimer laser), C3O2 molecules decompose to yield atomic carbon vapor with precisely known and readily controllable parameters. This is followed by the condensation of supersaturated carbon vapor and the formation of carbon nanoparticles. These processes have been investigated by the laser extinction and laser-induced incandescence (LII) methods in wide ranges of experimental conditions (carbon vapor concentration, nature of the diluent gas, and gas pressure). The current and ultimate particle sizes and the kinetic parameters of particle growth have been determined. The characteristic time of particle growth ranges between 20 and 1000 μs, depending on photolysis conditions. The ultimate particle size determined by electron microscopy is 5–12 nm for all experimental conditions. It increases with increasing total gas pressure and carbon vapor partial pressure and depends on the diluent gas. The translational energy accommodation coefficients for the Ar, He, CO, and C3O2 molecules interacting with the carbon particle surface have been determined by comparing the LII and electron microscopic particle sizes. A simple model has been constructed to describe the condensation of carbon nanoparticles from supersaturated atomic vapor. According to this model, the main process in nanoparticle formation is surface growth through the addition of separate atoms to the nucleation cluster. The nucleus concentrations for various condensation parameters have been determined by comparing experimental and calculated data.
17 schema:genre research_article
18 schema:inLanguage en
19 schema:isAccessibleForFree false
20 schema:isPartOf N0e058e2d9c0448b08e6b8e81acdfc4b8
21 Nc41ec7ebb74442b2978ca91d6897e7fe
22 sg:journal.1136331
23 schema:name Formation of carbon nanoparticles by the condensation of supersaturated atomic vapor obtained by the laser photolysis of C3O2
24 schema:pagination 194-203
25 schema:productId N59ce16877ecd47b1a8570de8341e11d9
26 Nc8d3db19573f40208eb50d1118468f8c
27 Nca8b6fbafaeb4f44ad953f64525606f3
28 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009908373
29 https://doi.org/10.1134/s0023158407020036
30 schema:sdDatePublished 2019-04-10T16:39
31 schema:sdLicense https://scigraph.springernature.com/explorer/license/
32 schema:sdPublisher N4c3190082a694817b93fb1e33ae360e1
33 schema:url http://link.springer.com/10.1134/S0023158407020036
34 sgo:license sg:explorer/license/
35 sgo:sdDataset articles
36 rdf:type schema:ScholarlyArticle
37 N0e058e2d9c0448b08e6b8e81acdfc4b8 schema:issueNumber 2
38 rdf:type schema:PublicationIssue
39 N4c3190082a694817b93fb1e33ae360e1 schema:name Springer Nature - SN SciGraph project
40 rdf:type schema:Organization
41 N59ce16877ecd47b1a8570de8341e11d9 schema:name doi
42 schema:value 10.1134/s0023158407020036
43 rdf:type schema:PropertyValue
44 N76e4479183ce4635b0411ed7b6ef7ee3 rdf:first sg:person.014424512265.37
45 rdf:rest Na980e4767b7943079776e5408d4a7974
46 N9b28c412e587492ca5faa65bd1b85c8e schema:name Institut für Verbrennung und Gasdynamik, 47048, Duisburg, Germany
47 rdf:type schema:Organization
48 Na980e4767b7943079776e5408d4a7974 rdf:first sg:person.01253455771.35
49 rdf:rest rdf:nil
50 Nc41ec7ebb74442b2978ca91d6897e7fe schema:volumeNumber 48
51 rdf:type schema:PublicationVolume
52 Nc8d3db19573f40208eb50d1118468f8c schema:name readcube_id
53 schema:value 2f33f8f8bcb0a2214f0f7e6d32f392fe5affcd8da4c2df5c181aecbf57eeef39
54 rdf:type schema:PropertyValue
55 Nca8b6fbafaeb4f44ad953f64525606f3 schema:name dimensions_id
56 schema:value pub.1009908373
57 rdf:type schema:PropertyValue
58 Nf1302c63c7584f81a30e83195f87c6f0 rdf:first sg:person.011227332131.89
59 rdf:rest N76e4479183ce4635b0411ed7b6ef7ee3
60 anzsrc-for:03 schema:inDefinedTermSet anzsrc-for:
61 schema:name Chemical Sciences
62 rdf:type schema:DefinedTerm
63 anzsrc-for:0306 schema:inDefinedTermSet anzsrc-for:
64 schema:name Physical Chemistry (incl. Structural)
65 rdf:type schema:DefinedTerm
66 sg:journal.1136331 schema:issn 0023-1584
67 0453-8811
68 schema:name Kinetics and Catalysis
69 rdf:type schema:Periodical
70 sg:person.011227332131.89 schema:affiliation https://www.grid.ac/institutes/grid.4886.2
71 schema:familyName Gurentsov
72 schema:givenName E. V.
73 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011227332131.89
74 rdf:type schema:Person
75 sg:person.01253455771.35 schema:affiliation N9b28c412e587492ca5faa65bd1b85c8e
76 schema:familyName Schulz
77 schema:givenName C.
78 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01253455771.35
79 rdf:type schema:Person
80 sg:person.014424512265.37 schema:affiliation https://www.grid.ac/institutes/grid.4886.2
81 schema:familyName Eremin
82 schema:givenName A. V.
83 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014424512265.37
84 rdf:type schema:Person
85 sg:pub.10.1007/s00193-003-0178-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049045048
86 https://doi.org/10.1007/s00193-003-0178-1
87 rdf:type schema:CreativeWork
88 sg:pub.10.1007/s003400050483 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016906203
89 https://doi.org/10.1007/s003400050483
90 rdf:type schema:CreativeWork
91 https://doi.org/10.1016/0021-8502(95)00531-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005599521
92 rdf:type schema:CreativeWork
93 https://doi.org/10.1016/0360-1285(81)90001-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042616882
94 rdf:type schema:CreativeWork
95 https://doi.org/10.1016/j.combustflame.2003.09.013 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000233993
96 rdf:type schema:CreativeWork
97 https://doi.org/10.1016/j.proci.2004.07.034 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007322965
98 rdf:type schema:CreativeWork
99 https://doi.org/10.1016/s0010-2180(99)00067-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1014791379
100 rdf:type schema:CreativeWork
101 https://doi.org/10.1016/s1540-7489(02)80291-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015684593
102 rdf:type schema:CreativeWork
103 https://doi.org/10.1524/zpch.217.11.1361.20483 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001027160
104 rdf:type schema:CreativeWork
105 https://doi.org/10.1524/zpch.217.7.893.20396 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008552238
106 rdf:type schema:CreativeWork
107 https://www.grid.ac/institutes/grid.4886.2 schema:alternateName Russian Academy of Sciences
108 schema:name Institute of Thermal Physics of Extreme States, Russian Academy of Sciences, 125412, Moscow, Russia
109 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...