Effect of transverse shears on complex nonlinear vibrations of elastic beams View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2011-09

AUTHORS

V. A. Krysko, M. V. Zhigalov, O. A. Saltykova, A. V. Krysko

ABSTRACT

Models of geometrically nonlinear Euler-Bernoulli, Timoshenko, and Sheremet’ev-Pelekh beams under alternating transverse loading were constructed using the variational principle and the hypothesis method. The obtained differential equation systems were analyzed based on nonlinear dynamics and the qualitative theory of differential equations with using the finite difference method with the approximation O(h2) and the Bubnov-Galerkin finite element method. It is shown that for a relative thickness λ ⩽ 50, accounting for the rotation and bending of the beam normal leads to a significant change in the beam vibration modes. More... »

PAGES

834

Identifiers

URI

http://scigraph.springernature.com/pub.10.1134/s0021894411050191

DOI

http://dx.doi.org/10.1134/s0021894411050191

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1043541296


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0102", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Applied Mathematics", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Saratov State Technical University, 410054, Saratov, Russia", 
          "id": "http://www.grid.ac/institutes/grid.78837.33", 
          "name": [
            "Saratov State Technical University, 410054, Saratov, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Krysko", 
        "givenName": "V. A.", 
        "id": "sg:person.015167266033.92", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015167266033.92"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Saratov State Technical University, 410054, Saratov, Russia", 
          "id": "http://www.grid.ac/institutes/grid.78837.33", 
          "name": [
            "Saratov State Technical University, 410054, Saratov, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zhigalov", 
        "givenName": "M. V.", 
        "id": "sg:person.013131771141.82", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013131771141.82"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Saratov State Technical University, 410054, Saratov, Russia", 
          "id": "http://www.grid.ac/institutes/grid.78837.33", 
          "name": [
            "Saratov State Technical University, 410054, Saratov, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Saltykova", 
        "givenName": "O. A.", 
        "id": "sg:person.014360146335.38", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014360146335.38"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Saratov State Technical University, 410054, Saratov, Russia", 
          "id": "http://www.grid.ac/institutes/grid.78837.33", 
          "name": [
            "Saratov State Technical University, 410054, Saratov, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Krysko", 
        "givenName": "A. V.", 
        "id": "sg:person.016017316223.58", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016017316223.58"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/978-3-662-08992-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032878785", 
          "https://doi.org/10.1007/978-3-662-08992-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-540-77676-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035881761", 
          "https://doi.org/10.1007/978-3-540-77676-5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-642-55677-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052347846", 
          "https://doi.org/10.1007/978-3-642-55677-7"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2011-09", 
    "datePublishedReg": "2011-09-01", 
    "description": "Models of geometrically nonlinear Euler-Bernoulli, Timoshenko, and Sheremet\u2019ev-Pelekh beams under alternating transverse loading were constructed using the variational principle and the hypothesis method. The obtained differential equation systems were analyzed based on nonlinear dynamics and the qualitative theory of differential equations with using the finite difference method with the approximation O(h2) and the Bubnov-Galerkin finite element method. It is shown that for a relative thickness \u03bb \u2a7d 50, accounting for the rotation and bending of the beam normal leads to a significant change in the beam vibration modes.", 
    "genre": "article", 
    "id": "sg:pub.10.1134/s0021894411050191", 
    "inLanguage": "en", 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1136652", 
        "issn": [
          "0021-8944", 
          "1573-8620"
        ], 
        "name": "Journal of Applied Mechanics and Technical Physics", 
        "publisher": "Pleiades Publishing", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "5", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "52"
      }
    ], 
    "keywords": [
      "Bubnov-Galerkin finite element method", 
      "differential equation system", 
      "finite difference method", 
      "complex nonlinear vibration", 
      "differential equations", 
      "qualitative theory", 
      "equation system", 
      "nonlinear dynamics", 
      "variational principle", 
      "finite element method", 
      "difference method", 
      "nonlinear vibration", 
      "Euler\u2013Bernoulli", 
      "beam vibration modes", 
      "hypothesis method", 
      "element method", 
      "elastic beam", 
      "equations", 
      "approximation", 
      "transverse shear", 
      "transverse loading", 
      "vibration modes", 
      "theory", 
      "dynamics", 
      "Timoshenko", 
      "model", 
      "principles", 
      "vibration", 
      "system", 
      "thickness \u03bb", 
      "rotation", 
      "mode", 
      "beam", 
      "bending", 
      "shear", 
      "loading", 
      "effect", 
      "changes", 
      "method", 
      "significant changes", 
      "nonlinear Euler-Bernoulli", 
      "Sheremet\u2019ev-Pelekh beams", 
      "relative thickness \u03bb"
    ], 
    "name": "Effect of transverse shears on complex nonlinear vibrations of elastic beams", 
    "pagination": "834", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1043541296"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1134/s0021894411050191"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1134/s0021894411050191", 
      "https://app.dimensions.ai/details/publication/pub.1043541296"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2021-11-01T18:15", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20211101/entities/gbq_results/article/article_529.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1134/s0021894411050191"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1134/s0021894411050191'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1134/s0021894411050191'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1134/s0021894411050191'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1134/s0021894411050191'


 

This table displays all metadata directly associated to this object as RDF triples.

134 TRIPLES      22 PREDICATES      72 URIs      61 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1134/s0021894411050191 schema:about anzsrc-for:01
2 anzsrc-for:0102
3 schema:author Nc8d835d1c2e0406c846b4742005cd6be
4 schema:citation sg:pub.10.1007/978-3-540-77676-5
5 sg:pub.10.1007/978-3-642-55677-7
6 sg:pub.10.1007/978-3-662-08992-7
7 schema:datePublished 2011-09
8 schema:datePublishedReg 2011-09-01
9 schema:description Models of geometrically nonlinear Euler-Bernoulli, Timoshenko, and Sheremet’ev-Pelekh beams under alternating transverse loading were constructed using the variational principle and the hypothesis method. The obtained differential equation systems were analyzed based on nonlinear dynamics and the qualitative theory of differential equations with using the finite difference method with the approximation O(h2) and the Bubnov-Galerkin finite element method. It is shown that for a relative thickness λ ⩽ 50, accounting for the rotation and bending of the beam normal leads to a significant change in the beam vibration modes.
10 schema:genre article
11 schema:inLanguage en
12 schema:isAccessibleForFree false
13 schema:isPartOf N12cf3d1a25b54ca0a3be838153b0566b
14 N55ddcfbb2f984c9f98772c2d7ee0bafb
15 sg:journal.1136652
16 schema:keywords Bubnov-Galerkin finite element method
17 Euler–Bernoulli
18 Sheremet’ev-Pelekh beams
19 Timoshenko
20 approximation
21 beam
22 beam vibration modes
23 bending
24 changes
25 complex nonlinear vibration
26 difference method
27 differential equation system
28 differential equations
29 dynamics
30 effect
31 elastic beam
32 element method
33 equation system
34 equations
35 finite difference method
36 finite element method
37 hypothesis method
38 loading
39 method
40 mode
41 model
42 nonlinear Euler-Bernoulli
43 nonlinear dynamics
44 nonlinear vibration
45 principles
46 qualitative theory
47 relative thickness λ
48 rotation
49 shear
50 significant changes
51 system
52 theory
53 thickness λ
54 transverse loading
55 transverse shear
56 variational principle
57 vibration
58 vibration modes
59 schema:name Effect of transverse shears on complex nonlinear vibrations of elastic beams
60 schema:pagination 834
61 schema:productId N7235ef671bec4085aa50a0dc5cd9ebcc
62 Nec764d94e6fb4a509ca80b4381452c4d
63 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043541296
64 https://doi.org/10.1134/s0021894411050191
65 schema:sdDatePublished 2021-11-01T18:15
66 schema:sdLicense https://scigraph.springernature.com/explorer/license/
67 schema:sdPublisher N4dfce267a3fe43169c1ce585d81ae046
68 schema:url https://doi.org/10.1134/s0021894411050191
69 sgo:license sg:explorer/license/
70 sgo:sdDataset articles
71 rdf:type schema:ScholarlyArticle
72 N06b0b318cb9f43c5b7dacd60980fb591 rdf:first sg:person.016017316223.58
73 rdf:rest rdf:nil
74 N12cf3d1a25b54ca0a3be838153b0566b schema:issueNumber 5
75 rdf:type schema:PublicationIssue
76 N4dfce267a3fe43169c1ce585d81ae046 schema:name Springer Nature - SN SciGraph project
77 rdf:type schema:Organization
78 N55ddcfbb2f984c9f98772c2d7ee0bafb schema:volumeNumber 52
79 rdf:type schema:PublicationVolume
80 N7235ef671bec4085aa50a0dc5cd9ebcc schema:name dimensions_id
81 schema:value pub.1043541296
82 rdf:type schema:PropertyValue
83 N7fac0e45215e4381a6825c154507de14 rdf:first sg:person.014360146335.38
84 rdf:rest N06b0b318cb9f43c5b7dacd60980fb591
85 Nc8d835d1c2e0406c846b4742005cd6be rdf:first sg:person.015167266033.92
86 rdf:rest Ndde7592d706540adb56481f13a033f79
87 Ndde7592d706540adb56481f13a033f79 rdf:first sg:person.013131771141.82
88 rdf:rest N7fac0e45215e4381a6825c154507de14
89 Nec764d94e6fb4a509ca80b4381452c4d schema:name doi
90 schema:value 10.1134/s0021894411050191
91 rdf:type schema:PropertyValue
92 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
93 schema:name Mathematical Sciences
94 rdf:type schema:DefinedTerm
95 anzsrc-for:0102 schema:inDefinedTermSet anzsrc-for:
96 schema:name Applied Mathematics
97 rdf:type schema:DefinedTerm
98 sg:journal.1136652 schema:issn 0021-8944
99 1573-8620
100 schema:name Journal of Applied Mechanics and Technical Physics
101 schema:publisher Pleiades Publishing
102 rdf:type schema:Periodical
103 sg:person.013131771141.82 schema:affiliation grid-institutes:grid.78837.33
104 schema:familyName Zhigalov
105 schema:givenName M. V.
106 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013131771141.82
107 rdf:type schema:Person
108 sg:person.014360146335.38 schema:affiliation grid-institutes:grid.78837.33
109 schema:familyName Saltykova
110 schema:givenName O. A.
111 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014360146335.38
112 rdf:type schema:Person
113 sg:person.015167266033.92 schema:affiliation grid-institutes:grid.78837.33
114 schema:familyName Krysko
115 schema:givenName V. A.
116 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015167266033.92
117 rdf:type schema:Person
118 sg:person.016017316223.58 schema:affiliation grid-institutes:grid.78837.33
119 schema:familyName Krysko
120 schema:givenName A. V.
121 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016017316223.58
122 rdf:type schema:Person
123 sg:pub.10.1007/978-3-540-77676-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035881761
124 https://doi.org/10.1007/978-3-540-77676-5
125 rdf:type schema:CreativeWork
126 sg:pub.10.1007/978-3-642-55677-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052347846
127 https://doi.org/10.1007/978-3-642-55677-7
128 rdf:type schema:CreativeWork
129 sg:pub.10.1007/978-3-662-08992-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032878785
130 https://doi.org/10.1007/978-3-662-08992-7
131 rdf:type schema:CreativeWork
132 grid-institutes:grid.78837.33 schema:alternateName Saratov State Technical University, 410054, Saratov, Russia
133 schema:name Saratov State Technical University, 410054, Saratov, Russia
134 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...