On Dissipation Rate of Ocean Waves due to White Capping View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2019-02-26

AUTHORS

A. O. Korotkevich, A. O. Prokofiev, V. E. Zakharov

ABSTRACT

We calculate the rate of ocean waves energy dissipation due to whitecapping by numerical simulation of deterministic phase resolving model for dynamics of ocean surface. Two independent numerical experiments are performed. First, we solve the 3D Hamiltonian equation that includes three- and four-wave interactions. This model is valid only for moderate values of surface steepness, μ < 0.09. Then we solve the exact Euler equation for non-stationary potential flow of an ideal fluid with a free surface in 2D geometry. We use the conformal mapping of domain filled with fluid onto the lower half-plane. This model is applicable for arbitrary high levels of steepness. The results of both experiments are close. The whitecapping is the threshold process that takes place if the average steepness μ > μcr ≃ 0.055. The rate of energy dissipation grows dramatically with increasing of steepness. Comparison of our results with dissipation functions used in the operational models of wave forecasting shows that these models overestimate the rate of wave dissipation by order of magnitude for typical values of steepness. More... »

PAGES

1-7

References to SciGraph publications

  • 1968-03. Stability of periodic waves of finite amplitude on the surface of a deep fluid in JOURNAL OF APPLIED MECHANICS AND TECHNICAL PHYSICS
  • 2003-05. Weak turbulence of gravity waves in JETP LETTERS
  • 2005-10. Mesoscopic wave turbulence in JETP LETTERS
  • 2015-10. Evolution of one-dimensional wind-driven sea spectra in JETP LETTERS
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1134/s0021364019050035

    DOI

    http://dx.doi.org/10.1134/s0021364019050035

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1112396394


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0405", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Oceanography", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/04", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Earth Sciences", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Landau Institute for Theoretical Physics", 
              "id": "https://www.grid.ac/institutes/grid.436090.8", 
              "name": [
                "Department of Mathematics and Statistics, MSC01 1115, 1 University of New Mexico, 87131-0001, Albuquerque, NM, USA", 
                "L.D. Landau Institute for Theoretical Physics RAS, 119334, Moscow, Russia"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Korotkevich", 
            "givenName": "A. O.", 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Landau Institute for Theoretical Physics", 
              "id": "https://www.grid.ac/institutes/grid.436090.8", 
              "name": [
                "L.D. Landau Institute for Theoretical Physics RAS, 119334, Moscow, Russia"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Prokofiev", 
            "givenName": "A. O.", 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "University of Arizona", 
              "id": "https://www.grid.ac/institutes/grid.134563.6", 
              "name": [
                "L.D. Landau Institute for Theoretical Physics RAS, 119334, Moscow, Russia", 
                "Department of Mathematics, The University of Arizona, P.O. Box 210089, 85721-0089, Tucson, AZ, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Zakharov", 
            "givenName": "V. E.", 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1134/s0021364015200035", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1002149152", 
              "https://doi.org/10.1134/s0021364015200035"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf00913182", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1002440524", 
              "https://doi.org/10.1007/bf00913182"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.physleta.2007.09.027", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1003425909"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.101.074504", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1008290366"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.101.074504", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1008290366"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1175/1520-0485-32.9.2541", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1014276301"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.physd.2016.02.017", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1025305026"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.physd.2016.02.017", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1025305026"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.physd.2016.02.017", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1025305026"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.euromechflu.2006.03.004", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1026557305"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.ocemod.2016.03.005", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1028129615"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.ocemod.2016.03.005", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1028129615"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1111/sapm.12126", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1034583116"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1134/1.1595693", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1034861820", 
              "https://doi.org/10.1134/1.1595693"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1134/1.2150867", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1035506915", 
              "https://doi.org/10.1134/1.2150867"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1098/rsta.1985.0054", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1042247861"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.92.134501", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1046911473"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.92.134501", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1046911473"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.matcom.2010.07.009", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1051754739"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1175/1520-0485(2000)030<3145:bpfdwo>2.0.co;2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1052418736"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1017/s0022112098001517", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1053962235"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1088/0031-8949/2010/t142/014052", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1058995567"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1088/0031-8949/2010/t142/014052", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1058995567"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.69.1149", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060805140"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.69.1149", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060805140"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1017/cbo9780511628955", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1098688039"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2019-02-26", 
        "datePublishedReg": "2019-02-26", 
        "description": "We calculate the rate of ocean waves energy dissipation due to whitecapping by numerical simulation of deterministic phase resolving model for dynamics of ocean surface. Two independent numerical experiments are performed. First, we solve the 3D Hamiltonian equation that includes three- and four-wave interactions. This model is valid only for moderate values of surface steepness, \u03bc < 0.09. Then we solve the exact Euler equation for non-stationary potential flow of an ideal fluid with a free surface in 2D geometry. We use the conformal mapping of domain filled with fluid onto the lower half-plane. This model is applicable for arbitrary high levels of steepness. The results of both experiments are close. The whitecapping is the threshold process that takes place if the average steepness \u03bc > \u03bccr \u2243 0.055. The rate of energy dissipation grows dramatically with increasing of steepness. Comparison of our results with dissipation functions used in the operational models of wave forecasting shows that these models overestimate the rate of wave dissipation by order of magnitude for typical values of steepness.", 
        "genre": "research_article", 
        "id": "sg:pub.10.1134/s0021364019050035", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1052174", 
            "issn": [
              "0021-3640", 
              "1090-6487"
            ], 
            "name": "JETP Letters", 
            "type": "Periodical"
          }
        ], 
        "name": "On Dissipation Rate of Ocean Waves due to White Capping", 
        "pagination": "1-7", 
        "productId": [
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "cca858e482273257afe2461bda5b96fc36ae72b89402dbdc3724d949b6e39c61"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1134/s0021364019050035"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1112396394"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1134/s0021364019050035", 
          "https://app.dimensions.ai/details/publication/pub.1112396394"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-11T09:50", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000347_0000000347/records_89786_00000004.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://link.springer.com/10.1134%2FS0021364019050035"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1134/s0021364019050035'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1134/s0021364019050035'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1134/s0021364019050035'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1134/s0021364019050035'


     

    This table displays all metadata directly associated to this object as RDF triples.

    132 TRIPLES      21 PREDICATES      43 URIs      16 LITERALS      5 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1134/s0021364019050035 schema:about anzsrc-for:04
    2 anzsrc-for:0405
    3 schema:author N73ed071d3b6e475aaa2c5654e31ee0b5
    4 schema:citation sg:pub.10.1007/bf00913182
    5 sg:pub.10.1134/1.1595693
    6 sg:pub.10.1134/1.2150867
    7 sg:pub.10.1134/s0021364015200035
    8 https://doi.org/10.1016/j.euromechflu.2006.03.004
    9 https://doi.org/10.1016/j.matcom.2010.07.009
    10 https://doi.org/10.1016/j.ocemod.2016.03.005
    11 https://doi.org/10.1016/j.physd.2016.02.017
    12 https://doi.org/10.1016/j.physleta.2007.09.027
    13 https://doi.org/10.1017/cbo9780511628955
    14 https://doi.org/10.1017/s0022112098001517
    15 https://doi.org/10.1088/0031-8949/2010/t142/014052
    16 https://doi.org/10.1098/rsta.1985.0054
    17 https://doi.org/10.1103/physrevlett.101.074504
    18 https://doi.org/10.1103/physrevlett.69.1149
    19 https://doi.org/10.1103/physrevlett.92.134501
    20 https://doi.org/10.1111/sapm.12126
    21 https://doi.org/10.1175/1520-0485(2000)030<3145:bpfdwo>2.0.co;2
    22 https://doi.org/10.1175/1520-0485-32.9.2541
    23 schema:datePublished 2019-02-26
    24 schema:datePublishedReg 2019-02-26
    25 schema:description We calculate the rate of ocean waves energy dissipation due to whitecapping by numerical simulation of deterministic phase resolving model for dynamics of ocean surface. Two independent numerical experiments are performed. First, we solve the 3D Hamiltonian equation that includes three- and four-wave interactions. This model is valid only for moderate values of surface steepness, μ < 0.09. Then we solve the exact Euler equation for non-stationary potential flow of an ideal fluid with a free surface in 2D geometry. We use the conformal mapping of domain filled with fluid onto the lower half-plane. This model is applicable for arbitrary high levels of steepness. The results of both experiments are close. The whitecapping is the threshold process that takes place if the average steepness μ > μcr ≃ 0.055. The rate of energy dissipation grows dramatically with increasing of steepness. Comparison of our results with dissipation functions used in the operational models of wave forecasting shows that these models overestimate the rate of wave dissipation by order of magnitude for typical values of steepness.
    26 schema:genre research_article
    27 schema:inLanguage en
    28 schema:isAccessibleForFree false
    29 schema:isPartOf sg:journal.1052174
    30 schema:name On Dissipation Rate of Ocean Waves due to White Capping
    31 schema:pagination 1-7
    32 schema:productId N52abaff12ec54ed6aaba681e9d081846
    33 Nac43eb3feabf4b76b582becc80fd6189
    34 Nb7d65dfbc384464bb58bc1199a5126d1
    35 schema:sameAs https://app.dimensions.ai/details/publication/pub.1112396394
    36 https://doi.org/10.1134/s0021364019050035
    37 schema:sdDatePublished 2019-04-11T09:50
    38 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    39 schema:sdPublisher N6f8b59d34d75435593dc5b63e8d2b18a
    40 schema:url https://link.springer.com/10.1134%2FS0021364019050035
    41 sgo:license sg:explorer/license/
    42 sgo:sdDataset articles
    43 rdf:type schema:ScholarlyArticle
    44 N43f6304294a54f8188555a36d2c11059 schema:affiliation https://www.grid.ac/institutes/grid.436090.8
    45 schema:familyName Korotkevich
    46 schema:givenName A. O.
    47 rdf:type schema:Person
    48 N5005b11fe5d045fea32e8532aab18714 rdf:first Nfbc13f844bda4676b28a6301b6b3ec5f
    49 rdf:rest rdf:nil
    50 N52abaff12ec54ed6aaba681e9d081846 schema:name readcube_id
    51 schema:value cca858e482273257afe2461bda5b96fc36ae72b89402dbdc3724d949b6e39c61
    52 rdf:type schema:PropertyValue
    53 N6e04ced189a74e698b7fc81ca77aeacb rdf:first Ndaa36753b5ea425c9a2126e2d0cfbb27
    54 rdf:rest N5005b11fe5d045fea32e8532aab18714
    55 N6f8b59d34d75435593dc5b63e8d2b18a schema:name Springer Nature - SN SciGraph project
    56 rdf:type schema:Organization
    57 N73ed071d3b6e475aaa2c5654e31ee0b5 rdf:first N43f6304294a54f8188555a36d2c11059
    58 rdf:rest N6e04ced189a74e698b7fc81ca77aeacb
    59 Nac43eb3feabf4b76b582becc80fd6189 schema:name dimensions_id
    60 schema:value pub.1112396394
    61 rdf:type schema:PropertyValue
    62 Nb7d65dfbc384464bb58bc1199a5126d1 schema:name doi
    63 schema:value 10.1134/s0021364019050035
    64 rdf:type schema:PropertyValue
    65 Ndaa36753b5ea425c9a2126e2d0cfbb27 schema:affiliation https://www.grid.ac/institutes/grid.436090.8
    66 schema:familyName Prokofiev
    67 schema:givenName A. O.
    68 rdf:type schema:Person
    69 Nfbc13f844bda4676b28a6301b6b3ec5f schema:affiliation https://www.grid.ac/institutes/grid.134563.6
    70 schema:familyName Zakharov
    71 schema:givenName V. E.
    72 rdf:type schema:Person
    73 anzsrc-for:04 schema:inDefinedTermSet anzsrc-for:
    74 schema:name Earth Sciences
    75 rdf:type schema:DefinedTerm
    76 anzsrc-for:0405 schema:inDefinedTermSet anzsrc-for:
    77 schema:name Oceanography
    78 rdf:type schema:DefinedTerm
    79 sg:journal.1052174 schema:issn 0021-3640
    80 1090-6487
    81 schema:name JETP Letters
    82 rdf:type schema:Periodical
    83 sg:pub.10.1007/bf00913182 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002440524
    84 https://doi.org/10.1007/bf00913182
    85 rdf:type schema:CreativeWork
    86 sg:pub.10.1134/1.1595693 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034861820
    87 https://doi.org/10.1134/1.1595693
    88 rdf:type schema:CreativeWork
    89 sg:pub.10.1134/1.2150867 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035506915
    90 https://doi.org/10.1134/1.2150867
    91 rdf:type schema:CreativeWork
    92 sg:pub.10.1134/s0021364015200035 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002149152
    93 https://doi.org/10.1134/s0021364015200035
    94 rdf:type schema:CreativeWork
    95 https://doi.org/10.1016/j.euromechflu.2006.03.004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026557305
    96 rdf:type schema:CreativeWork
    97 https://doi.org/10.1016/j.matcom.2010.07.009 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051754739
    98 rdf:type schema:CreativeWork
    99 https://doi.org/10.1016/j.ocemod.2016.03.005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028129615
    100 rdf:type schema:CreativeWork
    101 https://doi.org/10.1016/j.physd.2016.02.017 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025305026
    102 rdf:type schema:CreativeWork
    103 https://doi.org/10.1016/j.physleta.2007.09.027 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003425909
    104 rdf:type schema:CreativeWork
    105 https://doi.org/10.1017/cbo9780511628955 schema:sameAs https://app.dimensions.ai/details/publication/pub.1098688039
    106 rdf:type schema:CreativeWork
    107 https://doi.org/10.1017/s0022112098001517 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053962235
    108 rdf:type schema:CreativeWork
    109 https://doi.org/10.1088/0031-8949/2010/t142/014052 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058995567
    110 rdf:type schema:CreativeWork
    111 https://doi.org/10.1098/rsta.1985.0054 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042247861
    112 rdf:type schema:CreativeWork
    113 https://doi.org/10.1103/physrevlett.101.074504 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008290366
    114 rdf:type schema:CreativeWork
    115 https://doi.org/10.1103/physrevlett.69.1149 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060805140
    116 rdf:type schema:CreativeWork
    117 https://doi.org/10.1103/physrevlett.92.134501 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046911473
    118 rdf:type schema:CreativeWork
    119 https://doi.org/10.1111/sapm.12126 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034583116
    120 rdf:type schema:CreativeWork
    121 https://doi.org/10.1175/1520-0485(2000)030<3145:bpfdwo>2.0.co;2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052418736
    122 rdf:type schema:CreativeWork
    123 https://doi.org/10.1175/1520-0485-32.9.2541 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014276301
    124 rdf:type schema:CreativeWork
    125 https://www.grid.ac/institutes/grid.134563.6 schema:alternateName University of Arizona
    126 schema:name Department of Mathematics, The University of Arizona, P.O. Box 210089, 85721-0089, Tucson, AZ, USA
    127 L.D. Landau Institute for Theoretical Physics RAS, 119334, Moscow, Russia
    128 rdf:type schema:Organization
    129 https://www.grid.ac/institutes/grid.436090.8 schema:alternateName Landau Institute for Theoretical Physics
    130 schema:name Department of Mathematics and Statistics, MSC01 1115, 1 University of New Mexico, 87131-0001, Albuquerque, NM, USA
    131 L.D. Landau Institute for Theoretical Physics RAS, 119334, Moscow, Russia
    132 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...