Metastability at the Loss of the Morphological Stability of the Moving Boundary of a Fluid View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2018-07

AUTHORS

L. M. Martyushev, R. D. Bando, E. A. Chervontseva

ABSTRACT

The morphological stability of the interface between two fluids has been analyzed for the case where one of them displaces the other in a radial Hele-Shaw cell. The numerical calculation has shown for the first time that the critical size of instability decreases with an increase in the perturbation amplitudes of the interface and reaches a value previously determined from independent analytical calculations of the thermodynamic entropy production and the maximum entropy production principle. This reason is important evidence for the hypothesis that the entropy production makes it possible to predict nonequilibrium phase transitions in hydrodynamic systems (i.e., it is an analog of the thermodynamic potential). In other words, the entropy production determines a kinetic binodal, i.e., the interface of a metastable region in the case of perturbations with arbitrary amplitude. More... »

PAGES

38-43

Identifiers

URI

http://scigraph.springernature.com/pub.10.1134/s0021364018130118

DOI

http://dx.doi.org/10.1134/s0021364018130118

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1106581319


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0915", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Interdisciplinary Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Engineering", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Institute of Industrial Ecology", 
          "id": "https://www.grid.ac/institutes/grid.474646.3", 
          "name": [
            "Ural Federal University, 620002, Yekaterinburg, Russia", 
            "Institute of Industrial Ecology, Ural Branch, Russian Academy of Sciences, 620219, Yekaterinburg, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Martyushev", 
        "givenName": "L. M.", 
        "id": "sg:person.01053755712.55", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01053755712.55"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Ural Federal University", 
          "id": "https://www.grid.ac/institutes/grid.412761.7", 
          "name": [
            "Ural Federal University, 620002, Yekaterinburg, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Bando", 
        "givenName": "R. D.", 
        "id": "sg:person.010450270435.45", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010450270435.45"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Ural Federal University", 
          "id": "https://www.grid.ac/institutes/grid.412761.7", 
          "name": [
            "Ural Federal University, 620002, Yekaterinburg, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Chervontseva", 
        "givenName": "E. A.", 
        "id": "sg:person.016300252266.52", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016300252266.52"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1038/343523a0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004730035", 
          "https://doi.org/10.1038/343523a0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.physleta.2009.09.044", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005234704"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1134/1.1458480", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006560765", 
          "https://doi.org/10.1134/1.1458480"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.physa.2014.05.014", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007112001"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1134/s0015462816050069", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013337345", 
          "https://doi.org/10.1134/s0015462816050069"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1134/s0015462816050069", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013337345", 
          "https://doi.org/10.1134/s0015462816050069"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/348426a0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014852169", 
          "https://doi.org/10.1038/348426a0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1134/s0021364014080104", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016300585", 
          "https://doi.org/10.1134/s0021364014080104"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1134/1.1307241", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018329938", 
          "https://doi.org/10.1134/1.1307241"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.physrep.2005.12.001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034244400"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1017/s0022112084000367", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035026917"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0953-8984/20/46/465102", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039001417"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0167-2789(98)00097-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039557948"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1146/annurev.fl.19.010187.001415", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042452842"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0953-8984/20/04/045201", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043060731"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1017/s0022112081003613", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1054023363"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.43.5537", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060483347"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.43.5537", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060483347"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.51.4751", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060717869"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.51.4751", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060717869"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.80.066306", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060739911"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.80.066306", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060739911"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/revmodphys.58.977", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060839107"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/revmodphys.58.977", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060839107"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1209/0295-5075/90/10012", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064233082"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1209/0295-5075/90/10012", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064233082"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2018-07", 
    "datePublishedReg": "2018-07-01", 
    "description": "The morphological stability of the interface between two fluids has been analyzed for the case where one of them displaces the other in a radial Hele-Shaw cell. The numerical calculation has shown for the first time that the critical size of instability decreases with an increase in the perturbation amplitudes of the interface and reaches a value previously determined from independent analytical calculations of the thermodynamic entropy production and the maximum entropy production principle. This reason is important evidence for the hypothesis that the entropy production makes it possible to predict nonequilibrium phase transitions in hydrodynamic systems (i.e., it is an analog of the thermodynamic potential). In other words, the entropy production determines a kinetic binodal, i.e., the interface of a metastable region in the case of perturbations with arbitrary amplitude.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1134/s0021364018130118", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1052174", 
        "issn": [
          "0021-3640", 
          "1090-6487"
        ], 
        "name": "JETP Letters", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "108"
      }
    ], 
    "name": "Metastability at the Loss of the Morphological Stability of the Moving Boundary of a Fluid", 
    "pagination": "38-43", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "061288857c6d6424b5eda6ee08ba9c89c7320e5cda1ba83f2877f4d003a3c5cd"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1134/s0021364018130118"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1106581319"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1134/s0021364018130118", 
      "https://app.dimensions.ai/details/publication/pub.1106581319"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T00:13", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8695_00000502.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1134/S0021364018130118"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1134/s0021364018130118'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1134/s0021364018130118'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1134/s0021364018130118'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1134/s0021364018130118'


 

This table displays all metadata directly associated to this object as RDF triples.

145 TRIPLES      21 PREDICATES      47 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1134/s0021364018130118 schema:about anzsrc-for:09
2 anzsrc-for:0915
3 schema:author Na363bfff88e64d05bbaedef579c2ff34
4 schema:citation sg:pub.10.1038/343523a0
5 sg:pub.10.1038/348426a0
6 sg:pub.10.1134/1.1307241
7 sg:pub.10.1134/1.1458480
8 sg:pub.10.1134/s0015462816050069
9 sg:pub.10.1134/s0021364014080104
10 https://doi.org/10.1016/j.physa.2014.05.014
11 https://doi.org/10.1016/j.physleta.2009.09.044
12 https://doi.org/10.1016/j.physrep.2005.12.001
13 https://doi.org/10.1016/s0167-2789(98)00097-9
14 https://doi.org/10.1017/s0022112081003613
15 https://doi.org/10.1017/s0022112084000367
16 https://doi.org/10.1088/0953-8984/20/04/045201
17 https://doi.org/10.1088/0953-8984/20/46/465102
18 https://doi.org/10.1103/physreva.43.5537
19 https://doi.org/10.1103/physreve.51.4751
20 https://doi.org/10.1103/physreve.80.066306
21 https://doi.org/10.1103/revmodphys.58.977
22 https://doi.org/10.1146/annurev.fl.19.010187.001415
23 https://doi.org/10.1209/0295-5075/90/10012
24 schema:datePublished 2018-07
25 schema:datePublishedReg 2018-07-01
26 schema:description The morphological stability of the interface between two fluids has been analyzed for the case where one of them displaces the other in a radial Hele-Shaw cell. The numerical calculation has shown for the first time that the critical size of instability decreases with an increase in the perturbation amplitudes of the interface and reaches a value previously determined from independent analytical calculations of the thermodynamic entropy production and the maximum entropy production principle. This reason is important evidence for the hypothesis that the entropy production makes it possible to predict nonequilibrium phase transitions in hydrodynamic systems (i.e., it is an analog of the thermodynamic potential). In other words, the entropy production determines a kinetic binodal, i.e., the interface of a metastable region in the case of perturbations with arbitrary amplitude.
27 schema:genre research_article
28 schema:inLanguage en
29 schema:isAccessibleForFree false
30 schema:isPartOf N5d903d002d92407d8a31918926261bb0
31 N91498b04992f4fc188aff11038d26b0b
32 sg:journal.1052174
33 schema:name Metastability at the Loss of the Morphological Stability of the Moving Boundary of a Fluid
34 schema:pagination 38-43
35 schema:productId N0377f4689e9f43ccbfa5df8575c46f0d
36 N830ae899f57f4094a1c7016ba6cc9e82
37 Neab10f50784940bf817b47e2bb320462
38 schema:sameAs https://app.dimensions.ai/details/publication/pub.1106581319
39 https://doi.org/10.1134/s0021364018130118
40 schema:sdDatePublished 2019-04-11T00:13
41 schema:sdLicense https://scigraph.springernature.com/explorer/license/
42 schema:sdPublisher Nfcae187c92c7487a97e1757fd2095e5c
43 schema:url http://link.springer.com/10.1134/S0021364018130118
44 sgo:license sg:explorer/license/
45 sgo:sdDataset articles
46 rdf:type schema:ScholarlyArticle
47 N0377f4689e9f43ccbfa5df8575c46f0d schema:name doi
48 schema:value 10.1134/s0021364018130118
49 rdf:type schema:PropertyValue
50 N057dbf217cfd4f4bbffc6b834cfc958e rdf:first sg:person.016300252266.52
51 rdf:rest rdf:nil
52 N5d903d002d92407d8a31918926261bb0 schema:issueNumber 1
53 rdf:type schema:PublicationIssue
54 N830ae899f57f4094a1c7016ba6cc9e82 schema:name readcube_id
55 schema:value 061288857c6d6424b5eda6ee08ba9c89c7320e5cda1ba83f2877f4d003a3c5cd
56 rdf:type schema:PropertyValue
57 N91498b04992f4fc188aff11038d26b0b schema:volumeNumber 108
58 rdf:type schema:PublicationVolume
59 Na363bfff88e64d05bbaedef579c2ff34 rdf:first sg:person.01053755712.55
60 rdf:rest Nbed256517e144d6fa868ff7a631dcd40
61 Nbed256517e144d6fa868ff7a631dcd40 rdf:first sg:person.010450270435.45
62 rdf:rest N057dbf217cfd4f4bbffc6b834cfc958e
63 Neab10f50784940bf817b47e2bb320462 schema:name dimensions_id
64 schema:value pub.1106581319
65 rdf:type schema:PropertyValue
66 Nfcae187c92c7487a97e1757fd2095e5c schema:name Springer Nature - SN SciGraph project
67 rdf:type schema:Organization
68 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
69 schema:name Engineering
70 rdf:type schema:DefinedTerm
71 anzsrc-for:0915 schema:inDefinedTermSet anzsrc-for:
72 schema:name Interdisciplinary Engineering
73 rdf:type schema:DefinedTerm
74 sg:journal.1052174 schema:issn 0021-3640
75 1090-6487
76 schema:name JETP Letters
77 rdf:type schema:Periodical
78 sg:person.010450270435.45 schema:affiliation https://www.grid.ac/institutes/grid.412761.7
79 schema:familyName Bando
80 schema:givenName R. D.
81 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010450270435.45
82 rdf:type schema:Person
83 sg:person.01053755712.55 schema:affiliation https://www.grid.ac/institutes/grid.474646.3
84 schema:familyName Martyushev
85 schema:givenName L. M.
86 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01053755712.55
87 rdf:type schema:Person
88 sg:person.016300252266.52 schema:affiliation https://www.grid.ac/institutes/grid.412761.7
89 schema:familyName Chervontseva
90 schema:givenName E. A.
91 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016300252266.52
92 rdf:type schema:Person
93 sg:pub.10.1038/343523a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004730035
94 https://doi.org/10.1038/343523a0
95 rdf:type schema:CreativeWork
96 sg:pub.10.1038/348426a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014852169
97 https://doi.org/10.1038/348426a0
98 rdf:type schema:CreativeWork
99 sg:pub.10.1134/1.1307241 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018329938
100 https://doi.org/10.1134/1.1307241
101 rdf:type schema:CreativeWork
102 sg:pub.10.1134/1.1458480 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006560765
103 https://doi.org/10.1134/1.1458480
104 rdf:type schema:CreativeWork
105 sg:pub.10.1134/s0015462816050069 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013337345
106 https://doi.org/10.1134/s0015462816050069
107 rdf:type schema:CreativeWork
108 sg:pub.10.1134/s0021364014080104 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016300585
109 https://doi.org/10.1134/s0021364014080104
110 rdf:type schema:CreativeWork
111 https://doi.org/10.1016/j.physa.2014.05.014 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007112001
112 rdf:type schema:CreativeWork
113 https://doi.org/10.1016/j.physleta.2009.09.044 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005234704
114 rdf:type schema:CreativeWork
115 https://doi.org/10.1016/j.physrep.2005.12.001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034244400
116 rdf:type schema:CreativeWork
117 https://doi.org/10.1016/s0167-2789(98)00097-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039557948
118 rdf:type schema:CreativeWork
119 https://doi.org/10.1017/s0022112081003613 schema:sameAs https://app.dimensions.ai/details/publication/pub.1054023363
120 rdf:type schema:CreativeWork
121 https://doi.org/10.1017/s0022112084000367 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035026917
122 rdf:type schema:CreativeWork
123 https://doi.org/10.1088/0953-8984/20/04/045201 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043060731
124 rdf:type schema:CreativeWork
125 https://doi.org/10.1088/0953-8984/20/46/465102 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039001417
126 rdf:type schema:CreativeWork
127 https://doi.org/10.1103/physreva.43.5537 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060483347
128 rdf:type schema:CreativeWork
129 https://doi.org/10.1103/physreve.51.4751 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060717869
130 rdf:type schema:CreativeWork
131 https://doi.org/10.1103/physreve.80.066306 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060739911
132 rdf:type schema:CreativeWork
133 https://doi.org/10.1103/revmodphys.58.977 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060839107
134 rdf:type schema:CreativeWork
135 https://doi.org/10.1146/annurev.fl.19.010187.001415 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042452842
136 rdf:type schema:CreativeWork
137 https://doi.org/10.1209/0295-5075/90/10012 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064233082
138 rdf:type schema:CreativeWork
139 https://www.grid.ac/institutes/grid.412761.7 schema:alternateName Ural Federal University
140 schema:name Ural Federal University, 620002, Yekaterinburg, Russia
141 rdf:type schema:Organization
142 https://www.grid.ac/institutes/grid.474646.3 schema:alternateName Institute of Industrial Ecology
143 schema:name Institute of Industrial Ecology, Ural Branch, Russian Academy of Sciences, 620219, Yekaterinburg, Russia
144 Ural Federal University, 620002, Yekaterinburg, Russia
145 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...