Optical second harmonic generation induced by picosecond terahertz pulses in centrosymmetric antiferromagnet NiO View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2016-10

AUTHORS

A. V. Ovchinnikov, O. V. Chefonov, M. B. Agranat, K. A. Grishunin, N. A. Il’in, R. V. Pisarev, A. V. Kimel, A. M. Kalashnikova

ABSTRACT

Optical second harmonic generation at the photon energy of 2ℏω = 2eV in the model centrosymmetric antiferromagnet NiO irradiated with picosecond terahertz pulses (0.4–2.5 THz) at room temperature is detected. The analysis of experimental results shows that induced optical second harmonic generation at the moment of the impact of a terahertz pulse arises through the electric dipole mechanism of the interaction of the electric field of a pump pulse with the electron subsystem of NiO. Temporal changes in optical second harmonic generation during 7 ps after the action of the pulse are also of an electric dipole origin and are determined by the effects of propagation of the terahertz pulse in a NiO platelet. Coherent oscillations of spins at the antiferromagnetic resonance frequency induced by the magnetic component of the terahertz pulse induce a relatively weak modulation of magnetic dipole optical second harmonic generation. More... »

PAGES

441-448

Identifiers

URI

http://scigraph.springernature.com/pub.10.1134/s0021364016190085

DOI

http://dx.doi.org/10.1134/s0021364016190085

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1046364435


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0205", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Optical Physics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/02", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Russian Academy of Sciences", 
          "id": "https://www.grid.ac/institutes/grid.4886.2", 
          "name": [
            "Joint Institute for High Temperatures, Russian Academy of Sciences, 125412, Moscow, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ovchinnikov", 
        "givenName": "A. V.", 
        "id": "sg:person.07437027037.41", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07437027037.41"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Russian Academy of Sciences", 
          "id": "https://www.grid.ac/institutes/grid.4886.2", 
          "name": [
            "Joint Institute for High Temperatures, Russian Academy of Sciences, 125412, Moscow, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Chefonov", 
        "givenName": "O. V.", 
        "id": "sg:person.01226661453.18", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01226661453.18"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Russian Academy of Sciences", 
          "id": "https://www.grid.ac/institutes/grid.4886.2", 
          "name": [
            "Joint Institute for High Temperatures, Russian Academy of Sciences, 125412, Moscow, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Agranat", 
        "givenName": "M. B.", 
        "id": "sg:person.016442141137.04", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016442141137.04"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Moscow Technological University", 
          "id": "https://www.grid.ac/institutes/grid.466477.0", 
          "name": [
            "Moscow Technological University MIREA, 119454, Moscow, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Grishunin", 
        "givenName": "K. A.", 
        "id": "sg:person.015725026463.98", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015725026463.98"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Moscow Technological University", 
          "id": "https://www.grid.ac/institutes/grid.466477.0", 
          "name": [
            "Moscow Technological University MIREA, 119454, Moscow, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Il\u2019in", 
        "givenName": "N. A.", 
        "id": "sg:person.011412276663.70", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011412276663.70"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Ioffe Institute", 
          "id": "https://www.grid.ac/institutes/grid.423485.c", 
          "name": [
            "Ioffe Institute, 194021, St. Petersburg, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Pisarev", 
        "givenName": "R. V.", 
        "id": "sg:person.016361452764.86", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016361452764.86"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Radboud University Nijmegen", 
          "id": "https://www.grid.ac/institutes/grid.5590.9", 
          "name": [
            "Moscow Technological University MIREA, 119454, Moscow, Russia", 
            "Radboud University, Institute for Molecules and Materials, 6525AJ, Nijmegen, The Netherlands"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kimel", 
        "givenName": "A. V.", 
        "id": "sg:person.01151244177.44", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01151244177.44"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Saint Petersburg State University", 
          "id": "https://www.grid.ac/institutes/grid.15447.33", 
          "name": [
            "Ioffe Institute, 194021, St. Petersburg, Russia", 
            "St. Petersburg State University, 199034, St. Petersburg, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kalashnikova", 
        "givenName": "A. M.", 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1002/adma.201502975", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015970708"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1364/oe.23.004573", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019972937"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature01077", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028037905", 
          "https://doi.org/10.1038/nature01077"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature01077", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028037905", 
          "https://doi.org/10.1038/nature01077"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nphoton.2010.259", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030002822", 
          "https://doi.org/10.1038/nphoton.2010.259"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.4071/1551-4897-5.1.1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030902347"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.3655331", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041147263"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.4908186", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043618923"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.105.077402", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044232750"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.105.077402", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044232750"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/09500340.2014.918200", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047755515"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1242862", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050707512"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nphoton.2015.249", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051901803", 
          "https://doi.org/10.1038/nphoton.2015.249"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.1556158", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057719354"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.364863", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057991623"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.3682082", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057999898"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0022-3719/8/23/009", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058967925"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrev.130.919", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060427114"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrev.130.919", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060427114"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.53.11734", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060579379"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.53.11734", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060579379"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.58.14462", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060589355"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.58.14462", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060589355"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.6.3447", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060592740"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.6.3447", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060592740"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.74.144401", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060618913"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.74.144401", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060618913"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.87.094422", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060641026"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.87.094422", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060641026"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.108.097401", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060759474"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.108.097401", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060759474"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.112.213901", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060762803"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.112.213901", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060762803"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.84.5620", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060821461"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.84.5620", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060821461"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.87.137202", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060823757"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.87.137202", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060823757"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1143/jpsj.38.1634", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1063101386"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1364/josab.22.000096", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1065171196"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1364/josab.22.000148", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1065171200"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1364/ol.35.002645", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1065228992"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1364/ol.39.006632", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1065236697"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2016-10", 
    "datePublishedReg": "2016-10-01", 
    "description": "Optical second harmonic generation at the photon energy of 2\u210f\u03c9 = 2eV in the model centrosymmetric antiferromagnet NiO irradiated with picosecond terahertz pulses (0.4\u20132.5 THz) at room temperature is detected. The analysis of experimental results shows that induced optical second harmonic generation at the moment of the impact of a terahertz pulse arises through the electric dipole mechanism of the interaction of the electric field of a pump pulse with the electron subsystem of NiO. Temporal changes in optical second harmonic generation during 7 ps after the action of the pulse are also of an electric dipole origin and are determined by the effects of propagation of the terahertz pulse in a NiO platelet. Coherent oscillations of spins at the antiferromagnetic resonance frequency induced by the magnetic component of the terahertz pulse induce a relatively weak modulation of magnetic dipole optical second harmonic generation.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1134/s0021364016190085", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1052174", 
        "issn": [
          "0021-3640", 
          "1090-6487"
        ], 
        "name": "JETP Letters", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "7", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "104"
      }
    ], 
    "name": "Optical second harmonic generation induced by picosecond terahertz pulses in centrosymmetric antiferromagnet NiO", 
    "pagination": "441-448", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "dcdbcd7d217a74a8c2649e0d514203e937f51343af6e33c91874ea87e86159b4"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1134/s0021364016190085"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1046364435"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1134/s0021364016190085", 
      "https://app.dimensions.ai/details/publication/pub.1046364435"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T13:11", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000367_0000000367/records_88251_00000000.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1134%2FS0021364016190085"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1134/s0021364016190085'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1134/s0021364016190085'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1134/s0021364016190085'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1134/s0021364016190085'


 

This table displays all metadata directly associated to this object as RDF triples.

216 TRIPLES      21 PREDICATES      57 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1134/s0021364016190085 schema:about anzsrc-for:02
2 anzsrc-for:0205
3 schema:author N4f46c95cd11240ec974b7c1dbc27555a
4 schema:citation sg:pub.10.1038/nature01077
5 sg:pub.10.1038/nphoton.2010.259
6 sg:pub.10.1038/nphoton.2015.249
7 https://doi.org/10.1002/adma.201502975
8 https://doi.org/10.1063/1.1556158
9 https://doi.org/10.1063/1.364863
10 https://doi.org/10.1063/1.3655331
11 https://doi.org/10.1063/1.3682082
12 https://doi.org/10.1063/1.4908186
13 https://doi.org/10.1080/09500340.2014.918200
14 https://doi.org/10.1088/0022-3719/8/23/009
15 https://doi.org/10.1103/physrev.130.919
16 https://doi.org/10.1103/physrevb.53.11734
17 https://doi.org/10.1103/physrevb.58.14462
18 https://doi.org/10.1103/physrevb.6.3447
19 https://doi.org/10.1103/physrevb.74.144401
20 https://doi.org/10.1103/physrevb.87.094422
21 https://doi.org/10.1103/physrevlett.105.077402
22 https://doi.org/10.1103/physrevlett.108.097401
23 https://doi.org/10.1103/physrevlett.112.213901
24 https://doi.org/10.1103/physrevlett.84.5620
25 https://doi.org/10.1103/physrevlett.87.137202
26 https://doi.org/10.1126/science.1242862
27 https://doi.org/10.1143/jpsj.38.1634
28 https://doi.org/10.1364/josab.22.000096
29 https://doi.org/10.1364/josab.22.000148
30 https://doi.org/10.1364/oe.23.004573
31 https://doi.org/10.1364/ol.35.002645
32 https://doi.org/10.1364/ol.39.006632
33 https://doi.org/10.4071/1551-4897-5.1.1
34 schema:datePublished 2016-10
35 schema:datePublishedReg 2016-10-01
36 schema:description Optical second harmonic generation at the photon energy of 2ℏω = 2eV in the model centrosymmetric antiferromagnet NiO irradiated with picosecond terahertz pulses (0.4–2.5 THz) at room temperature is detected. The analysis of experimental results shows that induced optical second harmonic generation at the moment of the impact of a terahertz pulse arises through the electric dipole mechanism of the interaction of the electric field of a pump pulse with the electron subsystem of NiO. Temporal changes in optical second harmonic generation during 7 ps after the action of the pulse are also of an electric dipole origin and are determined by the effects of propagation of the terahertz pulse in a NiO platelet. Coherent oscillations of spins at the antiferromagnetic resonance frequency induced by the magnetic component of the terahertz pulse induce a relatively weak modulation of magnetic dipole optical second harmonic generation.
37 schema:genre research_article
38 schema:inLanguage en
39 schema:isAccessibleForFree false
40 schema:isPartOf N7a01c93941584f19a1287d874f8d14e1
41 Nae211188f2e145868555993f47fdcea4
42 sg:journal.1052174
43 schema:name Optical second harmonic generation induced by picosecond terahertz pulses in centrosymmetric antiferromagnet NiO
44 schema:pagination 441-448
45 schema:productId N0ee0909d175b4e1cb8e2794c76911bb3
46 N280eb9efe3164eb2b41e6fe04c40ee7c
47 Nbfce935cf4e54254860c416e218a2b82
48 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046364435
49 https://doi.org/10.1134/s0021364016190085
50 schema:sdDatePublished 2019-04-11T13:11
51 schema:sdLicense https://scigraph.springernature.com/explorer/license/
52 schema:sdPublisher N5dddd954761e45959657d797cbe41bb7
53 schema:url https://link.springer.com/10.1134%2FS0021364016190085
54 sgo:license sg:explorer/license/
55 sgo:sdDataset articles
56 rdf:type schema:ScholarlyArticle
57 N0cbb125245e54c53baf3671c8d049fd4 rdf:first N75028212861440968fac2aa808505b15
58 rdf:rest rdf:nil
59 N0ee0909d175b4e1cb8e2794c76911bb3 schema:name dimensions_id
60 schema:value pub.1046364435
61 rdf:type schema:PropertyValue
62 N280eb9efe3164eb2b41e6fe04c40ee7c schema:name doi
63 schema:value 10.1134/s0021364016190085
64 rdf:type schema:PropertyValue
65 N4f46c95cd11240ec974b7c1dbc27555a rdf:first sg:person.07437027037.41
66 rdf:rest Nd1dce24c90a0450cba8f4dbbcc58784e
67 N5dddd954761e45959657d797cbe41bb7 schema:name Springer Nature - SN SciGraph project
68 rdf:type schema:Organization
69 N6c777263545f4b96a01e2af8b61d25bf rdf:first sg:person.016361452764.86
70 rdf:rest Nb2413a2aa0b045e3b1a4d22438556a62
71 N75028212861440968fac2aa808505b15 schema:affiliation https://www.grid.ac/institutes/grid.15447.33
72 schema:familyName Kalashnikova
73 schema:givenName A. M.
74 rdf:type schema:Person
75 N7a01c93941584f19a1287d874f8d14e1 schema:volumeNumber 104
76 rdf:type schema:PublicationVolume
77 N9bdeb68c2f854380bc774c4fb6578eb4 rdf:first sg:person.011412276663.70
78 rdf:rest N6c777263545f4b96a01e2af8b61d25bf
79 Nab880555c002434b9a1508016f61d5b8 rdf:first sg:person.015725026463.98
80 rdf:rest N9bdeb68c2f854380bc774c4fb6578eb4
81 Nae211188f2e145868555993f47fdcea4 schema:issueNumber 7
82 rdf:type schema:PublicationIssue
83 Nb2413a2aa0b045e3b1a4d22438556a62 rdf:first sg:person.01151244177.44
84 rdf:rest N0cbb125245e54c53baf3671c8d049fd4
85 Nbfce935cf4e54254860c416e218a2b82 schema:name readcube_id
86 schema:value dcdbcd7d217a74a8c2649e0d514203e937f51343af6e33c91874ea87e86159b4
87 rdf:type schema:PropertyValue
88 Ncb00d0080d4546f4a857be759ebbdc4e rdf:first sg:person.016442141137.04
89 rdf:rest Nab880555c002434b9a1508016f61d5b8
90 Nd1dce24c90a0450cba8f4dbbcc58784e rdf:first sg:person.01226661453.18
91 rdf:rest Ncb00d0080d4546f4a857be759ebbdc4e
92 anzsrc-for:02 schema:inDefinedTermSet anzsrc-for:
93 schema:name Physical Sciences
94 rdf:type schema:DefinedTerm
95 anzsrc-for:0205 schema:inDefinedTermSet anzsrc-for:
96 schema:name Optical Physics
97 rdf:type schema:DefinedTerm
98 sg:journal.1052174 schema:issn 0021-3640
99 1090-6487
100 schema:name JETP Letters
101 rdf:type schema:Periodical
102 sg:person.011412276663.70 schema:affiliation https://www.grid.ac/institutes/grid.466477.0
103 schema:familyName Il’in
104 schema:givenName N. A.
105 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011412276663.70
106 rdf:type schema:Person
107 sg:person.01151244177.44 schema:affiliation https://www.grid.ac/institutes/grid.5590.9
108 schema:familyName Kimel
109 schema:givenName A. V.
110 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01151244177.44
111 rdf:type schema:Person
112 sg:person.01226661453.18 schema:affiliation https://www.grid.ac/institutes/grid.4886.2
113 schema:familyName Chefonov
114 schema:givenName O. V.
115 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01226661453.18
116 rdf:type schema:Person
117 sg:person.015725026463.98 schema:affiliation https://www.grid.ac/institutes/grid.466477.0
118 schema:familyName Grishunin
119 schema:givenName K. A.
120 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015725026463.98
121 rdf:type schema:Person
122 sg:person.016361452764.86 schema:affiliation https://www.grid.ac/institutes/grid.423485.c
123 schema:familyName Pisarev
124 schema:givenName R. V.
125 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016361452764.86
126 rdf:type schema:Person
127 sg:person.016442141137.04 schema:affiliation https://www.grid.ac/institutes/grid.4886.2
128 schema:familyName Agranat
129 schema:givenName M. B.
130 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016442141137.04
131 rdf:type schema:Person
132 sg:person.07437027037.41 schema:affiliation https://www.grid.ac/institutes/grid.4886.2
133 schema:familyName Ovchinnikov
134 schema:givenName A. V.
135 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07437027037.41
136 rdf:type schema:Person
137 sg:pub.10.1038/nature01077 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028037905
138 https://doi.org/10.1038/nature01077
139 rdf:type schema:CreativeWork
140 sg:pub.10.1038/nphoton.2010.259 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030002822
141 https://doi.org/10.1038/nphoton.2010.259
142 rdf:type schema:CreativeWork
143 sg:pub.10.1038/nphoton.2015.249 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051901803
144 https://doi.org/10.1038/nphoton.2015.249
145 rdf:type schema:CreativeWork
146 https://doi.org/10.1002/adma.201502975 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015970708
147 rdf:type schema:CreativeWork
148 https://doi.org/10.1063/1.1556158 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057719354
149 rdf:type schema:CreativeWork
150 https://doi.org/10.1063/1.364863 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057991623
151 rdf:type schema:CreativeWork
152 https://doi.org/10.1063/1.3655331 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041147263
153 rdf:type schema:CreativeWork
154 https://doi.org/10.1063/1.3682082 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057999898
155 rdf:type schema:CreativeWork
156 https://doi.org/10.1063/1.4908186 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043618923
157 rdf:type schema:CreativeWork
158 https://doi.org/10.1080/09500340.2014.918200 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047755515
159 rdf:type schema:CreativeWork
160 https://doi.org/10.1088/0022-3719/8/23/009 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058967925
161 rdf:type schema:CreativeWork
162 https://doi.org/10.1103/physrev.130.919 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060427114
163 rdf:type schema:CreativeWork
164 https://doi.org/10.1103/physrevb.53.11734 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060579379
165 rdf:type schema:CreativeWork
166 https://doi.org/10.1103/physrevb.58.14462 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060589355
167 rdf:type schema:CreativeWork
168 https://doi.org/10.1103/physrevb.6.3447 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060592740
169 rdf:type schema:CreativeWork
170 https://doi.org/10.1103/physrevb.74.144401 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060618913
171 rdf:type schema:CreativeWork
172 https://doi.org/10.1103/physrevb.87.094422 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060641026
173 rdf:type schema:CreativeWork
174 https://doi.org/10.1103/physrevlett.105.077402 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044232750
175 rdf:type schema:CreativeWork
176 https://doi.org/10.1103/physrevlett.108.097401 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060759474
177 rdf:type schema:CreativeWork
178 https://doi.org/10.1103/physrevlett.112.213901 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060762803
179 rdf:type schema:CreativeWork
180 https://doi.org/10.1103/physrevlett.84.5620 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060821461
181 rdf:type schema:CreativeWork
182 https://doi.org/10.1103/physrevlett.87.137202 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060823757
183 rdf:type schema:CreativeWork
184 https://doi.org/10.1126/science.1242862 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050707512
185 rdf:type schema:CreativeWork
186 https://doi.org/10.1143/jpsj.38.1634 schema:sameAs https://app.dimensions.ai/details/publication/pub.1063101386
187 rdf:type schema:CreativeWork
188 https://doi.org/10.1364/josab.22.000096 schema:sameAs https://app.dimensions.ai/details/publication/pub.1065171196
189 rdf:type schema:CreativeWork
190 https://doi.org/10.1364/josab.22.000148 schema:sameAs https://app.dimensions.ai/details/publication/pub.1065171200
191 rdf:type schema:CreativeWork
192 https://doi.org/10.1364/oe.23.004573 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019972937
193 rdf:type schema:CreativeWork
194 https://doi.org/10.1364/ol.35.002645 schema:sameAs https://app.dimensions.ai/details/publication/pub.1065228992
195 rdf:type schema:CreativeWork
196 https://doi.org/10.1364/ol.39.006632 schema:sameAs https://app.dimensions.ai/details/publication/pub.1065236697
197 rdf:type schema:CreativeWork
198 https://doi.org/10.4071/1551-4897-5.1.1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030902347
199 rdf:type schema:CreativeWork
200 https://www.grid.ac/institutes/grid.15447.33 schema:alternateName Saint Petersburg State University
201 schema:name Ioffe Institute, 194021, St. Petersburg, Russia
202 St. Petersburg State University, 199034, St. Petersburg, Russia
203 rdf:type schema:Organization
204 https://www.grid.ac/institutes/grid.423485.c schema:alternateName Ioffe Institute
205 schema:name Ioffe Institute, 194021, St. Petersburg, Russia
206 rdf:type schema:Organization
207 https://www.grid.ac/institutes/grid.466477.0 schema:alternateName Moscow Technological University
208 schema:name Moscow Technological University MIREA, 119454, Moscow, Russia
209 rdf:type schema:Organization
210 https://www.grid.ac/institutes/grid.4886.2 schema:alternateName Russian Academy of Sciences
211 schema:name Joint Institute for High Temperatures, Russian Academy of Sciences, 125412, Moscow, Russia
212 rdf:type schema:Organization
213 https://www.grid.ac/institutes/grid.5590.9 schema:alternateName Radboud University Nijmegen
214 schema:name Moscow Technological University MIREA, 119454, Moscow, Russia
215 Radboud University, Institute for Molecules and Materials, 6525AJ, Nijmegen, The Netherlands
216 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...