Stimulated emission at transitions between Wannier–Stark ladders in semiconductor superlattices View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2015-08

AUTHORS

A. A. Andronov, E. P. Dodin, D. I. Zinchenko, Yu. N. Nozdrin, M. A. Ladugin, A. A. Marmalyuk, A. A. Padalitsa, V. A. Belyakov, I. V. Ladenkov, A. G. Fefelov

ABSTRACT

New intraband semiconductor lasers—Wannier–Stark lasers—based on simple GaAs (150 Å, quantum well)/GaAlAs (19 Å with an aluminum fraction of 12%, barrier) superlattices have been demonstrated. The amplification mechanism in these lasers is based on population inversion between the ground Wannier–Stark level in the superlattice quantum wells and the weakly populated upper Wannier–Stark level in the wells two, three, or four periods down in the applied potential. Multiple regions of intense stimulated microwave emission near voltages of 8, 13, and 20 V (i.e., in the vicinity of resonances between these Wannier–Stark levels of the superlattice) have been discovered in the laser chips. The stimulated emission emerges in the circuit formed by the chip and its wiring. The emission from one of the chips at a temperature of up to 150 K (near 20 V applied to the chip) occurs at a frequency of about 7.3 GHz and has an estimated power of up to 1 W. It has been shown that the negative conductivity responsible for the emission still persists at 300 K but the emission is unseen owing to high losses in the circuit at this temperature. The superlattice wafer has been grown by metalorganic chemical vapor deposition. It consists of 1000 periods and a stop layer, to produce a metal–superlattice–metal terahertz resonator. Terahertz radiation has not been observed owing to a low amplification, as compared to losses in the resonator. According to the performed experiments, calculations, and discussions, such superlattices as radiation sources in gigahertz, terahertz, and higher frequency ranges could compete with quantum cascade lasers under appropriate optimization of their parameters. More... »

PAGES

207-211

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1134/s0021364015160031

DOI

http://dx.doi.org/10.1134/s0021364015160031

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1017112024


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/02", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0299", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Other Physical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Institute for Physics of Microstructures, Russian Academy of Sciences, ul. Akademicheskaya 7, 603950, Nizhny Novgorod, Russia", 
          "id": "http://www.grid.ac/institutes/grid.425081.a", 
          "name": [
            "Institute for Physics of Microstructures, Russian Academy of Sciences, ul. Akademicheskaya 7, 603950, Nizhny Novgorod, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Andronov", 
        "givenName": "A. A.", 
        "id": "sg:person.013123321516.17", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013123321516.17"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Institute for Physics of Microstructures, Russian Academy of Sciences, ul. Akademicheskaya 7, 603950, Nizhny Novgorod, Russia", 
          "id": "http://www.grid.ac/institutes/grid.425081.a", 
          "name": [
            "Institute for Physics of Microstructures, Russian Academy of Sciences, ul. Akademicheskaya 7, 603950, Nizhny Novgorod, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Dodin", 
        "givenName": "E. P.", 
        "id": "sg:person.013462724352.52", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013462724352.52"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Institute for Physics of Microstructures, Russian Academy of Sciences, ul. Akademicheskaya 7, 603950, Nizhny Novgorod, Russia", 
          "id": "http://www.grid.ac/institutes/grid.425081.a", 
          "name": [
            "Institute for Physics of Microstructures, Russian Academy of Sciences, ul. Akademicheskaya 7, 603950, Nizhny Novgorod, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zinchenko", 
        "givenName": "D. I.", 
        "id": "sg:person.016111223516.13", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016111223516.13"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Institute for Physics of Microstructures, Russian Academy of Sciences, ul. Akademicheskaya 7, 603950, Nizhny Novgorod, Russia", 
          "id": "http://www.grid.ac/institutes/grid.425081.a", 
          "name": [
            "Institute for Physics of Microstructures, Russian Academy of Sciences, ul. Akademicheskaya 7, 603950, Nizhny Novgorod, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Nozdrin", 
        "givenName": "Yu. N.", 
        "id": "sg:person.015754340241.27", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015754340241.27"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Sigm Plus Engineering, ul. Vvedenskogo 3, 117342, Moscow, Russia", 
          "id": "http://www.grid.ac/institutes/None", 
          "name": [
            "Sigm Plus Engineering, ul. Vvedenskogo 3, 117342, Moscow, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ladugin", 
        "givenName": "M. A.", 
        "id": "sg:person.010664504164.39", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010664504164.39"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Sigm Plus Engineering, ul. Vvedenskogo 3, 117342, Moscow, Russia", 
          "id": "http://www.grid.ac/institutes/None", 
          "name": [
            "Sigm Plus Engineering, ul. Vvedenskogo 3, 117342, Moscow, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Marmalyuk", 
        "givenName": "A. A.", 
        "id": "sg:person.07551002331.06", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07551002331.06"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Sigm Plus Engineering, ul. Vvedenskogo 3, 117342, Moscow, Russia", 
          "id": "http://www.grid.ac/institutes/None", 
          "name": [
            "Sigm Plus Engineering, ul. Vvedenskogo 3, 117342, Moscow, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Padalitsa", 
        "givenName": "A. A.", 
        "id": "sg:person.016502037023.14", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016502037023.14"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Research and Production Enterprise Salyut, ul. Larina 7, 603950, Nizhny Novgorod, Russia", 
          "id": "http://www.grid.ac/institutes/None", 
          "name": [
            "Research and Production Enterprise Salyut, ul. Larina 7, 603950, Nizhny Novgorod, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Belyakov", 
        "givenName": "V. A.", 
        "id": "sg:person.015034357653.92", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015034357653.92"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Research and Production Enterprise Salyut, ul. Larina 7, 603950, Nizhny Novgorod, Russia", 
          "id": "http://www.grid.ac/institutes/None", 
          "name": [
            "Research and Production Enterprise Salyut, ul. Larina 7, 603950, Nizhny Novgorod, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ladenkov", 
        "givenName": "I. V.", 
        "id": "sg:person.012073437766.36", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012073437766.36"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Research and Production Enterprise Salyut, ul. Larina 7, 603950, Nizhny Novgorod, Russia", 
          "id": "http://www.grid.ac/institutes/None", 
          "name": [
            "Research and Production Enterprise Salyut, ul. Larina 7, 603950, Nizhny Novgorod, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Fefelov", 
        "givenName": "A. G.", 
        "id": "sg:person.012763506363.14", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012763506363.14"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1134/s106378261301003x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010344051", 
          "https://doi.org/10.1134/s106378261301003x"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/417156a", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027918831", 
          "https://doi.org/10.1038/417156a"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01332747", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034817421", 
          "https://doi.org/10.1007/bf01332747"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nphoton.2007.166", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037819628", 
          "https://doi.org/10.1038/nphoton.2007.166"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2015-08", 
    "datePublishedReg": "2015-08-01", 
    "description": "New intraband semiconductor lasers\u2014Wannier\u2013Stark lasers\u2014based on simple GaAs (150 \u00c5, quantum well)/GaAlAs (19 \u00c5 with an aluminum fraction of 12%, barrier) superlattices have been demonstrated. The amplification mechanism in these lasers is based on population inversion between the ground Wannier\u2013Stark level in the superlattice quantum wells and the weakly populated upper Wannier\u2013Stark level in the wells two, three, or four periods down in the applied potential. Multiple regions of intense stimulated microwave emission near voltages of 8, 13, and 20 V (i.e., in the vicinity of resonances between these Wannier\u2013Stark levels of the superlattice) have been discovered in the laser chips. The stimulated emission emerges in the circuit formed by the chip and its wiring. The emission from one of the chips at a temperature of up to 150 K (near 20 V applied to the chip) occurs at a frequency of about 7.3 GHz and has an estimated power of up to 1 W. It has been shown that the negative conductivity responsible for the emission still persists at 300 K but the emission is unseen owing to high losses in the circuit at this temperature. The superlattice wafer has been grown by metalorganic chemical vapor deposition. It consists of 1000 periods and a stop layer, to produce a metal\u2013superlattice\u2013metal terahertz resonator. Terahertz radiation has not been observed owing to a low amplification, as compared to losses in the resonator. According to the performed experiments, calculations, and discussions, such superlattices as radiation sources in gigahertz, terahertz, and higher frequency ranges could compete with quantum cascade lasers under appropriate optimization of their parameters.", 
    "genre": "article", 
    "id": "sg:pub.10.1134/s0021364015160031", 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1052174", 
        "issn": [
          "0021-3640", 
          "1090-6487"
        ], 
        "name": "JETP Letters", 
        "publisher": "Pleiades Publishing", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "4", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "102"
      }
    ], 
    "keywords": [
      "Wannier-Stark levels", 
      "superlattice quantum wells", 
      "quantum cascade lasers", 
      "metalorganic chemical vapor deposition", 
      "cascade lasers", 
      "laser chip", 
      "quantum wells", 
      "chemical vapor deposition", 
      "terahertz radiation", 
      "population inversion", 
      "terahertz resonators", 
      "radiation source", 
      "semiconductor superlattices", 
      "Stark ladders", 
      "negative conductivity", 
      "microwave emission", 
      "such superlattices", 
      "simple GaAs", 
      "vapor deposition", 
      "superlattices", 
      "laser", 
      "emission", 
      "frequency range", 
      "stop layer", 
      "high frequency range", 
      "resonator", 
      "terahertz", 
      "gigahertz", 
      "semiconductors", 
      "Stark", 
      "amplification mechanism", 
      "chip", 
      "GaAs", 
      "wafers", 
      "radiation", 
      "appropriate optimization", 
      "performed experiments", 
      "high losses", 
      "circuit", 
      "temperature", 
      "calculations", 
      "GHz", 
      "transition", 
      "voltage", 
      "wells", 
      "deposition", 
      "conductivity", 
      "layer", 
      "ladder", 
      "optimization", 
      "frequency", 
      "power", 
      "source", 
      "range", 
      "wiring", 
      "experiments", 
      "inversion", 
      "parameters", 
      "low amplification", 
      "amplification", 
      "region", 
      "potential", 
      "loss", 
      "mechanism", 
      "multiple regions", 
      "two", 
      "levels", 
      "discussion", 
      "period"
    ], 
    "name": "Stimulated emission at transitions between Wannier\u2013Stark ladders in semiconductor superlattices", 
    "pagination": "207-211", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1017112024"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1134/s0021364015160031"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1134/s0021364015160031", 
      "https://app.dimensions.ai/details/publication/pub.1017112024"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-09-02T16:00", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220902/entities/gbq_results/article/article_676.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1134/s0021364015160031"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1134/s0021364015160031'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1134/s0021364015160031'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1134/s0021364015160031'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1134/s0021364015160031'


 

This table displays all metadata directly associated to this object as RDF triples.

210 TRIPLES      21 PREDICATES      98 URIs      86 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1134/s0021364015160031 schema:about anzsrc-for:02
2 anzsrc-for:0299
3 schema:author N5af7012a495d4fdda20c111af82c4af2
4 schema:citation sg:pub.10.1007/bf01332747
5 sg:pub.10.1038/417156a
6 sg:pub.10.1038/nphoton.2007.166
7 sg:pub.10.1134/s106378261301003x
8 schema:datePublished 2015-08
9 schema:datePublishedReg 2015-08-01
10 schema:description New intraband semiconductor lasers—Wannier–Stark lasers—based on simple GaAs (150 Å, quantum well)/GaAlAs (19 Å with an aluminum fraction of 12%, barrier) superlattices have been demonstrated. The amplification mechanism in these lasers is based on population inversion between the ground Wannier–Stark level in the superlattice quantum wells and the weakly populated upper Wannier–Stark level in the wells two, three, or four periods down in the applied potential. Multiple regions of intense stimulated microwave emission near voltages of 8, 13, and 20 V (i.e., in the vicinity of resonances between these Wannier–Stark levels of the superlattice) have been discovered in the laser chips. The stimulated emission emerges in the circuit formed by the chip and its wiring. The emission from one of the chips at a temperature of up to 150 K (near 20 V applied to the chip) occurs at a frequency of about 7.3 GHz and has an estimated power of up to 1 W. It has been shown that the negative conductivity responsible for the emission still persists at 300 K but the emission is unseen owing to high losses in the circuit at this temperature. The superlattice wafer has been grown by metalorganic chemical vapor deposition. It consists of 1000 periods and a stop layer, to produce a metal–superlattice–metal terahertz resonator. Terahertz radiation has not been observed owing to a low amplification, as compared to losses in the resonator. According to the performed experiments, calculations, and discussions, such superlattices as radiation sources in gigahertz, terahertz, and higher frequency ranges could compete with quantum cascade lasers under appropriate optimization of their parameters.
11 schema:genre article
12 schema:isAccessibleForFree false
13 schema:isPartOf N24c789ac41124e989e08d2bf200fe82c
14 N4ec630eebeaa41918c1ea58bda02de83
15 sg:journal.1052174
16 schema:keywords GHz
17 GaAs
18 Stark
19 Stark ladders
20 Wannier-Stark levels
21 amplification
22 amplification mechanism
23 appropriate optimization
24 calculations
25 cascade lasers
26 chemical vapor deposition
27 chip
28 circuit
29 conductivity
30 deposition
31 discussion
32 emission
33 experiments
34 frequency
35 frequency range
36 gigahertz
37 high frequency range
38 high losses
39 inversion
40 ladder
41 laser
42 laser chip
43 layer
44 levels
45 loss
46 low amplification
47 mechanism
48 metalorganic chemical vapor deposition
49 microwave emission
50 multiple regions
51 negative conductivity
52 optimization
53 parameters
54 performed experiments
55 period
56 population inversion
57 potential
58 power
59 quantum cascade lasers
60 quantum wells
61 radiation
62 radiation source
63 range
64 region
65 resonator
66 semiconductor superlattices
67 semiconductors
68 simple GaAs
69 source
70 stop layer
71 such superlattices
72 superlattice quantum wells
73 superlattices
74 temperature
75 terahertz
76 terahertz radiation
77 terahertz resonators
78 transition
79 two
80 vapor deposition
81 voltage
82 wafers
83 wells
84 wiring
85 schema:name Stimulated emission at transitions between Wannier–Stark ladders in semiconductor superlattices
86 schema:pagination 207-211
87 schema:productId N509e7f8bb8e74b35b23208392ff9ab6d
88 Nc2b9bf20ab0649a3adbc2ee615945734
89 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017112024
90 https://doi.org/10.1134/s0021364015160031
91 schema:sdDatePublished 2022-09-02T16:00
92 schema:sdLicense https://scigraph.springernature.com/explorer/license/
93 schema:sdPublisher N7315b19e739846c0937bec33175df977
94 schema:url https://doi.org/10.1134/s0021364015160031
95 sgo:license sg:explorer/license/
96 sgo:sdDataset articles
97 rdf:type schema:ScholarlyArticle
98 N24c789ac41124e989e08d2bf200fe82c schema:issueNumber 4
99 rdf:type schema:PublicationIssue
100 N3b616daa36aa41a2beb1ea58cc3d91f8 rdf:first sg:person.07551002331.06
101 rdf:rest Nd5c9953af23b4ebcae866208f88ccffc
102 N4ec630eebeaa41918c1ea58bda02de83 schema:volumeNumber 102
103 rdf:type schema:PublicationVolume
104 N509e7f8bb8e74b35b23208392ff9ab6d schema:name dimensions_id
105 schema:value pub.1017112024
106 rdf:type schema:PropertyValue
107 N5af7012a495d4fdda20c111af82c4af2 rdf:first sg:person.013123321516.17
108 rdf:rest N6e165349705c42d0868841378615c772
109 N6bfa74008f554afea0828c9e9ce2800d rdf:first sg:person.012763506363.14
110 rdf:rest rdf:nil
111 N6e165349705c42d0868841378615c772 rdf:first sg:person.013462724352.52
112 rdf:rest N860b64c33eca49249f885ab91e67c793
113 N7315b19e739846c0937bec33175df977 schema:name Springer Nature - SN SciGraph project
114 rdf:type schema:Organization
115 N860b64c33eca49249f885ab91e67c793 rdf:first sg:person.016111223516.13
116 rdf:rest N9730d286628949f4ae5e8606b3484781
117 N9730d286628949f4ae5e8606b3484781 rdf:first sg:person.015754340241.27
118 rdf:rest Nc1c3799df5b148f6b2ed04f0b2582b86
119 Nae6837ec0b324c57b4d6f9b75ec27808 rdf:first sg:person.015034357653.92
120 rdf:rest Nd9ff85947b08404f9eab60ef3250c468
121 Nc1c3799df5b148f6b2ed04f0b2582b86 rdf:first sg:person.010664504164.39
122 rdf:rest N3b616daa36aa41a2beb1ea58cc3d91f8
123 Nc2b9bf20ab0649a3adbc2ee615945734 schema:name doi
124 schema:value 10.1134/s0021364015160031
125 rdf:type schema:PropertyValue
126 Nd5c9953af23b4ebcae866208f88ccffc rdf:first sg:person.016502037023.14
127 rdf:rest Nae6837ec0b324c57b4d6f9b75ec27808
128 Nd9ff85947b08404f9eab60ef3250c468 rdf:first sg:person.012073437766.36
129 rdf:rest N6bfa74008f554afea0828c9e9ce2800d
130 anzsrc-for:02 schema:inDefinedTermSet anzsrc-for:
131 schema:name Physical Sciences
132 rdf:type schema:DefinedTerm
133 anzsrc-for:0299 schema:inDefinedTermSet anzsrc-for:
134 schema:name Other Physical Sciences
135 rdf:type schema:DefinedTerm
136 sg:journal.1052174 schema:issn 0021-3640
137 1090-6487
138 schema:name JETP Letters
139 schema:publisher Pleiades Publishing
140 rdf:type schema:Periodical
141 sg:person.010664504164.39 schema:affiliation grid-institutes:None
142 schema:familyName Ladugin
143 schema:givenName M. A.
144 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010664504164.39
145 rdf:type schema:Person
146 sg:person.012073437766.36 schema:affiliation grid-institutes:None
147 schema:familyName Ladenkov
148 schema:givenName I. V.
149 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012073437766.36
150 rdf:type schema:Person
151 sg:person.012763506363.14 schema:affiliation grid-institutes:None
152 schema:familyName Fefelov
153 schema:givenName A. G.
154 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012763506363.14
155 rdf:type schema:Person
156 sg:person.013123321516.17 schema:affiliation grid-institutes:grid.425081.a
157 schema:familyName Andronov
158 schema:givenName A. A.
159 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013123321516.17
160 rdf:type schema:Person
161 sg:person.013462724352.52 schema:affiliation grid-institutes:grid.425081.a
162 schema:familyName Dodin
163 schema:givenName E. P.
164 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013462724352.52
165 rdf:type schema:Person
166 sg:person.015034357653.92 schema:affiliation grid-institutes:None
167 schema:familyName Belyakov
168 schema:givenName V. A.
169 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015034357653.92
170 rdf:type schema:Person
171 sg:person.015754340241.27 schema:affiliation grid-institutes:grid.425081.a
172 schema:familyName Nozdrin
173 schema:givenName Yu. N.
174 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015754340241.27
175 rdf:type schema:Person
176 sg:person.016111223516.13 schema:affiliation grid-institutes:grid.425081.a
177 schema:familyName Zinchenko
178 schema:givenName D. I.
179 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016111223516.13
180 rdf:type schema:Person
181 sg:person.016502037023.14 schema:affiliation grid-institutes:None
182 schema:familyName Padalitsa
183 schema:givenName A. A.
184 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016502037023.14
185 rdf:type schema:Person
186 sg:person.07551002331.06 schema:affiliation grid-institutes:None
187 schema:familyName Marmalyuk
188 schema:givenName A. A.
189 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07551002331.06
190 rdf:type schema:Person
191 sg:pub.10.1007/bf01332747 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034817421
192 https://doi.org/10.1007/bf01332747
193 rdf:type schema:CreativeWork
194 sg:pub.10.1038/417156a schema:sameAs https://app.dimensions.ai/details/publication/pub.1027918831
195 https://doi.org/10.1038/417156a
196 rdf:type schema:CreativeWork
197 sg:pub.10.1038/nphoton.2007.166 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037819628
198 https://doi.org/10.1038/nphoton.2007.166
199 rdf:type schema:CreativeWork
200 sg:pub.10.1134/s106378261301003x schema:sameAs https://app.dimensions.ai/details/publication/pub.1010344051
201 https://doi.org/10.1134/s106378261301003x
202 rdf:type schema:CreativeWork
203 grid-institutes:None schema:alternateName Research and Production Enterprise Salyut, ul. Larina 7, 603950, Nizhny Novgorod, Russia
204 Sigm Plus Engineering, ul. Vvedenskogo 3, 117342, Moscow, Russia
205 schema:name Research and Production Enterprise Salyut, ul. Larina 7, 603950, Nizhny Novgorod, Russia
206 Sigm Plus Engineering, ul. Vvedenskogo 3, 117342, Moscow, Russia
207 rdf:type schema:Organization
208 grid-institutes:grid.425081.a schema:alternateName Institute for Physics of Microstructures, Russian Academy of Sciences, ul. Akademicheskaya 7, 603950, Nizhny Novgorod, Russia
209 schema:name Institute for Physics of Microstructures, Russian Academy of Sciences, ul. Akademicheskaya 7, 603950, Nizhny Novgorod, Russia
210 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...