Landau theory for helical nematic phases View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2014-09

AUTHORS

E. I. Kats, V. V. Lebedev

ABSTRACT

We propose Landau phenomenology for the phase transition from the conventional nematic into the conical helical orientationally non-uniform structure recently identified in liquid crystals formed by “banana”-shaped molecules. The mean field predictions are mostly in agreement with experimental data. Based on the analogy with de Gennes model, we argue that fluctuations of the order parameter turn the transition to the first order phase transition rather than continuous one predicted by the mean-field theory. This conclusion is in agreement with experimental observations. We discuss the new Goldstone mode to be observed in the low-temperature phase. More... »

PAGES

110-113

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1134/s0021364014140070

DOI

http://dx.doi.org/10.1134/s0021364014140070

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1022164057


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1103", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Clinical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Medical and Health Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Moscow Institute of Physics and Technology", 
          "id": "https://www.grid.ac/institutes/grid.18763.3b", 
          "name": [
            "Landau Institute for Theoretical Physics, Russian Academy of Sciences, 142432, Chernogolovka, Moscow region, Russia", 
            "Moscow Institute of Physics and Technology (State University), 141700, Dolgoprudnyi, Moscow region, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kats", 
        "givenName": "E. I.", 
        "id": "sg:person.01112630015.23", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01112630015.23"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Moscow Institute of Physics and Technology", 
          "id": "https://www.grid.ac/institutes/grid.18763.3b", 
          "name": [
            "Landau Institute for Theoretical Physics, Russian Academy of Sciences, 142432, Chernogolovka, Moscow region, Russia", 
            "Moscow Institute of Physics and Technology (State University), 141700, Dolgoprudnyi, Moscow region, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Lebedev", 
        "givenName": "V. V.", 
        "id": "sg:person.01175464362.06", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01175464362.06"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/0370-1573(93)90119-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027234252"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0370-1573(93)90119-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027234252"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1039/c4cp00172a", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043692398"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.87.052503", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046592292"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.87.052503", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046592292"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ncomms3635", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053231508", 
          "https://doi.org/10.1038/ncomms3635"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0370-1573(74)90023-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053661698"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0370-1573(74)90023-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053661698"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.17.366", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060523748"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.17.366", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060523748"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.84.031704", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060742414"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.84.031704", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060742414"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.86.041703", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060744011"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.86.041703", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060744011"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.88.022503", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060745182"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.88.022503", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060745182"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.89.030501", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060745943"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.89.030501", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060745943"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.89.052502", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060746188"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.89.052502", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060746188"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.105.167801", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060757561"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.105.167801", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060757561"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.111.067801", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060761925"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.111.067801", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060761925"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.32.292", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060778046"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.32.292", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060778046"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1170028", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062459900"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1209/epl/i2001-00513-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064236201"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2014-09", 
    "datePublishedReg": "2014-09-01", 
    "description": "We propose Landau phenomenology for the phase transition from the conventional nematic into the conical helical orientationally non-uniform structure recently identified in liquid crystals formed by \u201cbanana\u201d-shaped molecules. The mean field predictions are mostly in agreement with experimental data. Based on the analogy with de Gennes model, we argue that fluctuations of the order parameter turn the transition to the first order phase transition rather than continuous one predicted by the mean-field theory. This conclusion is in agreement with experimental observations. We discuss the new Goldstone mode to be observed in the low-temperature phase.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1134/s0021364014140070", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1052174", 
        "issn": [
          "0021-3640", 
          "1090-6487"
        ], 
        "name": "JETP Letters", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "2", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "100"
      }
    ], 
    "name": "Landau theory for helical nematic phases", 
    "pagination": "110-113", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "69984d48bc8a7e10ba43f1c12cee73702449dc922f8716187b75a6d3144f9658"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1134/s0021364014140070"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1022164057"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1134/s0021364014140070", 
      "https://app.dimensions.ai/details/publication/pub.1022164057"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T16:39", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8669_00000499.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1134/S0021364014140070"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1134/s0021364014140070'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1134/s0021364014140070'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1134/s0021364014140070'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1134/s0021364014140070'


 

This table displays all metadata directly associated to this object as RDF triples.

118 TRIPLES      21 PREDICATES      43 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1134/s0021364014140070 schema:about anzsrc-for:11
2 anzsrc-for:1103
3 schema:author N08764ea829ab4106a78017ea2b256efe
4 schema:citation sg:pub.10.1038/ncomms3635
5 https://doi.org/10.1016/0370-1573(74)90023-4
6 https://doi.org/10.1016/0370-1573(93)90119-x
7 https://doi.org/10.1039/c4cp00172a
8 https://doi.org/10.1103/physrevb.17.366
9 https://doi.org/10.1103/physreve.84.031704
10 https://doi.org/10.1103/physreve.86.041703
11 https://doi.org/10.1103/physreve.87.052503
12 https://doi.org/10.1103/physreve.88.022503
13 https://doi.org/10.1103/physreve.89.030501
14 https://doi.org/10.1103/physreve.89.052502
15 https://doi.org/10.1103/physrevlett.105.167801
16 https://doi.org/10.1103/physrevlett.111.067801
17 https://doi.org/10.1103/physrevlett.32.292
18 https://doi.org/10.1126/science.1170028
19 https://doi.org/10.1209/epl/i2001-00513-x
20 schema:datePublished 2014-09
21 schema:datePublishedReg 2014-09-01
22 schema:description We propose Landau phenomenology for the phase transition from the conventional nematic into the conical helical orientationally non-uniform structure recently identified in liquid crystals formed by “banana”-shaped molecules. The mean field predictions are mostly in agreement with experimental data. Based on the analogy with de Gennes model, we argue that fluctuations of the order parameter turn the transition to the first order phase transition rather than continuous one predicted by the mean-field theory. This conclusion is in agreement with experimental observations. We discuss the new Goldstone mode to be observed in the low-temperature phase.
23 schema:genre research_article
24 schema:inLanguage en
25 schema:isAccessibleForFree true
26 schema:isPartOf Nbb3237caa6364ced9baf6685b2ee22ea
27 Neb677e3ccb8647e69e41b24cfe96d957
28 sg:journal.1052174
29 schema:name Landau theory for helical nematic phases
30 schema:pagination 110-113
31 schema:productId N0667500df35948348bcd5e58ebdb45aa
32 N44c28a41576342b482ac5c4f6474f8fe
33 Nb7d22f253f5b4f21aea5b120a8894931
34 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022164057
35 https://doi.org/10.1134/s0021364014140070
36 schema:sdDatePublished 2019-04-10T16:39
37 schema:sdLicense https://scigraph.springernature.com/explorer/license/
38 schema:sdPublisher N8b8deabb19dc4ba69f85e83032ce55ca
39 schema:url http://link.springer.com/10.1134/S0021364014140070
40 sgo:license sg:explorer/license/
41 sgo:sdDataset articles
42 rdf:type schema:ScholarlyArticle
43 N0667500df35948348bcd5e58ebdb45aa schema:name doi
44 schema:value 10.1134/s0021364014140070
45 rdf:type schema:PropertyValue
46 N08764ea829ab4106a78017ea2b256efe rdf:first sg:person.01112630015.23
47 rdf:rest N97e50dfffe7c43798743a666045096bc
48 N44c28a41576342b482ac5c4f6474f8fe schema:name dimensions_id
49 schema:value pub.1022164057
50 rdf:type schema:PropertyValue
51 N8b8deabb19dc4ba69f85e83032ce55ca schema:name Springer Nature - SN SciGraph project
52 rdf:type schema:Organization
53 N97e50dfffe7c43798743a666045096bc rdf:first sg:person.01175464362.06
54 rdf:rest rdf:nil
55 Nb7d22f253f5b4f21aea5b120a8894931 schema:name readcube_id
56 schema:value 69984d48bc8a7e10ba43f1c12cee73702449dc922f8716187b75a6d3144f9658
57 rdf:type schema:PropertyValue
58 Nbb3237caa6364ced9baf6685b2ee22ea schema:issueNumber 2
59 rdf:type schema:PublicationIssue
60 Neb677e3ccb8647e69e41b24cfe96d957 schema:volumeNumber 100
61 rdf:type schema:PublicationVolume
62 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
63 schema:name Medical and Health Sciences
64 rdf:type schema:DefinedTerm
65 anzsrc-for:1103 schema:inDefinedTermSet anzsrc-for:
66 schema:name Clinical Sciences
67 rdf:type schema:DefinedTerm
68 sg:journal.1052174 schema:issn 0021-3640
69 1090-6487
70 schema:name JETP Letters
71 rdf:type schema:Periodical
72 sg:person.01112630015.23 schema:affiliation https://www.grid.ac/institutes/grid.18763.3b
73 schema:familyName Kats
74 schema:givenName E. I.
75 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01112630015.23
76 rdf:type schema:Person
77 sg:person.01175464362.06 schema:affiliation https://www.grid.ac/institutes/grid.18763.3b
78 schema:familyName Lebedev
79 schema:givenName V. V.
80 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01175464362.06
81 rdf:type schema:Person
82 sg:pub.10.1038/ncomms3635 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053231508
83 https://doi.org/10.1038/ncomms3635
84 rdf:type schema:CreativeWork
85 https://doi.org/10.1016/0370-1573(74)90023-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053661698
86 rdf:type schema:CreativeWork
87 https://doi.org/10.1016/0370-1573(93)90119-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1027234252
88 rdf:type schema:CreativeWork
89 https://doi.org/10.1039/c4cp00172a schema:sameAs https://app.dimensions.ai/details/publication/pub.1043692398
90 rdf:type schema:CreativeWork
91 https://doi.org/10.1103/physrevb.17.366 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060523748
92 rdf:type schema:CreativeWork
93 https://doi.org/10.1103/physreve.84.031704 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060742414
94 rdf:type schema:CreativeWork
95 https://doi.org/10.1103/physreve.86.041703 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060744011
96 rdf:type schema:CreativeWork
97 https://doi.org/10.1103/physreve.87.052503 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046592292
98 rdf:type schema:CreativeWork
99 https://doi.org/10.1103/physreve.88.022503 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060745182
100 rdf:type schema:CreativeWork
101 https://doi.org/10.1103/physreve.89.030501 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060745943
102 rdf:type schema:CreativeWork
103 https://doi.org/10.1103/physreve.89.052502 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060746188
104 rdf:type schema:CreativeWork
105 https://doi.org/10.1103/physrevlett.105.167801 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060757561
106 rdf:type schema:CreativeWork
107 https://doi.org/10.1103/physrevlett.111.067801 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060761925
108 rdf:type schema:CreativeWork
109 https://doi.org/10.1103/physrevlett.32.292 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060778046
110 rdf:type schema:CreativeWork
111 https://doi.org/10.1126/science.1170028 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062459900
112 rdf:type schema:CreativeWork
113 https://doi.org/10.1209/epl/i2001-00513-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1064236201
114 rdf:type schema:CreativeWork
115 https://www.grid.ac/institutes/grid.18763.3b schema:alternateName Moscow Institute of Physics and Technology
116 schema:name Landau Institute for Theoretical Physics, Russian Academy of Sciences, 142432, Chernogolovka, Moscow region, Russia
117 Moscow Institute of Physics and Technology (State University), 141700, Dolgoprudnyi, Moscow region, Russia
118 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...