Formation of nanojets and nanodroplets by an ultrashort laser pulse at focusing in the diffraction limit View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2014-09

AUTHORS

N. A. Inogamov, V. V. Zhakhovskii

ABSTRACT

A new model has been developed and calculations have been performed for the formation of nanodroplets after action of an ultrashort laser pulse on a thin (10–100 nm) gold film deposited on a glass substrate. The action of a laser results in the melting of the film in the region of a laser spot and in its thermomechanical separation from the substrate. The separated film acquires a dome shape because of a decrease in the temperature in the direction from the center of the laser spot. This theoretical model provides the explanation of the formation of nanodroplets. It has been established that, first, the separation speed of a gold film from glass decreases sharply because the acoustic impedance of gold is much larger than that of glass. Second, nanodroplets are formed owing to the capillary focusing of the substance, which is manifested in the appearance of the drag component directed toward the axis of symmetry of the dome. The surface tension becomes dynamically significant because of the indicated sharp decrease in the separation speed from glass and of the smallness of the diameter of the focal spot (D ∼ 1 μm), which is determined by the diffraction limit of optical radiation. More... »

PAGES

4-10

Journal

TITLE

JETP Letters

ISSUE

1

VOLUME

100

Author Affiliations

Identifiers

URI

http://scigraph.springernature.com/pub.10.1134/s0021364014130050

DOI

http://dx.doi.org/10.1134/s0021364014130050

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1036530230


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0299", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Other Physical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/02", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Russian Academy of Sciences", 
          "id": "https://www.grid.ac/institutes/grid.4886.2", 
          "name": [
            "Landau Institute for Theoretical Physics, Russian Academy of Sciences, 142432, Chernogolovka, Moscow region, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Inogamov", 
        "givenName": "N. A.", 
        "id": "sg:person.013473613553.02", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013473613553.02"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Russian Academy of Sciences", 
          "id": "https://www.grid.ac/institutes/grid.4886.2", 
          "name": [
            "All-Russia Research Institute of Automatics, ul. Sushchevskaya 22, 127055, Moscow, Russia", 
            "Joint Institute for High Temperatures, Russian Academy of Sciences, ul. Izhorskaya 13/19, 125412, Moscow, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zhakhovskii", 
        "givenName": "V. V.", 
        "id": "sg:person.016077213477.15", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016077213477.15"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/s00339-008-4859-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000862558", 
          "https://doi.org/10.1007/s00339-008-4859-6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00339-008-4859-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000862558", 
          "https://doi.org/10.1007/s00339-008-4859-6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00339-004-2590-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001499851", 
          "https://doi.org/10.1007/s00339-004-2590-5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.apsusc.2009.04.082", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003513558"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00339-005-3319-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032438523", 
          "https://doi.org/10.1007/s00339-005-3319-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00339-005-3319-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032438523", 
          "https://doi.org/10.1007/s00339-005-3319-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00339-008-4712-y", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034502236", 
          "https://doi.org/10.1007/s00339-008-4712-y"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00339-008-4712-y", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034502236", 
          "https://doi.org/10.1007/s00339-008-4712-y"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.apsusc.2007.01.080", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035460276"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00339-013-7656-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047247321", 
          "https://doi.org/10.1007/s00339-013-7656-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.3276161", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057929839"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.82.064113", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060633362"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.82.064113", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060633362"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.86.2066", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060822657"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.86.2066", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060822657"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1143/jjap.42.l1452", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1063071202"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1364/oe.20.024864", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1065201732"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2014-09", 
    "datePublishedReg": "2014-09-01", 
    "description": "A new model has been developed and calculations have been performed for the formation of nanodroplets after action of an ultrashort laser pulse on a thin (10\u2013100 nm) gold film deposited on a glass substrate. The action of a laser results in the melting of the film in the region of a laser spot and in its thermomechanical separation from the substrate. The separated film acquires a dome shape because of a decrease in the temperature in the direction from the center of the laser spot. This theoretical model provides the explanation of the formation of nanodroplets. It has been established that, first, the separation speed of a gold film from glass decreases sharply because the acoustic impedance of gold is much larger than that of glass. Second, nanodroplets are formed owing to the capillary focusing of the substance, which is manifested in the appearance of the drag component directed toward the axis of symmetry of the dome. The surface tension becomes dynamically significant because of the indicated sharp decrease in the separation speed from glass and of the smallness of the diameter of the focal spot (D \u223c 1 \u03bcm), which is determined by the diffraction limit of optical radiation.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1134/s0021364014130050", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1052174", 
        "issn": [
          "0021-3640", 
          "1090-6487"
        ], 
        "name": "JETP Letters", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "100"
      }
    ], 
    "name": "Formation of nanojets and nanodroplets by an ultrashort laser pulse at focusing in the diffraction limit", 
    "pagination": "4-10", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "ae03a4cc4f097a16702d1c6835f62b64a950ec8783e7998ba950eace082bf13e"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1134/s0021364014130050"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1036530230"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1134/s0021364014130050", 
      "https://app.dimensions.ai/details/publication/pub.1036530230"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T01:57", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8700_00000500.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1134/S0021364014130050"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1134/s0021364014130050'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1134/s0021364014130050'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1134/s0021364014130050'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1134/s0021364014130050'


 

This table displays all metadata directly associated to this object as RDF triples.

111 TRIPLES      21 PREDICATES      39 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1134/s0021364014130050 schema:about anzsrc-for:02
2 anzsrc-for:0299
3 schema:author Na57c4aebda64406bae82dbd2041211ec
4 schema:citation sg:pub.10.1007/s00339-004-2590-5
5 sg:pub.10.1007/s00339-005-3319-9
6 sg:pub.10.1007/s00339-008-4712-y
7 sg:pub.10.1007/s00339-008-4859-6
8 sg:pub.10.1007/s00339-013-7656-9
9 https://doi.org/10.1016/j.apsusc.2007.01.080
10 https://doi.org/10.1016/j.apsusc.2009.04.082
11 https://doi.org/10.1063/1.3276161
12 https://doi.org/10.1103/physrevb.82.064113
13 https://doi.org/10.1103/physrevlett.86.2066
14 https://doi.org/10.1143/jjap.42.l1452
15 https://doi.org/10.1364/oe.20.024864
16 schema:datePublished 2014-09
17 schema:datePublishedReg 2014-09-01
18 schema:description A new model has been developed and calculations have been performed for the formation of nanodroplets after action of an ultrashort laser pulse on a thin (10–100 nm) gold film deposited on a glass substrate. The action of a laser results in the melting of the film in the region of a laser spot and in its thermomechanical separation from the substrate. The separated film acquires a dome shape because of a decrease in the temperature in the direction from the center of the laser spot. This theoretical model provides the explanation of the formation of nanodroplets. It has been established that, first, the separation speed of a gold film from glass decreases sharply because the acoustic impedance of gold is much larger than that of glass. Second, nanodroplets are formed owing to the capillary focusing of the substance, which is manifested in the appearance of the drag component directed toward the axis of symmetry of the dome. The surface tension becomes dynamically significant because of the indicated sharp decrease in the separation speed from glass and of the smallness of the diameter of the focal spot (D ∼ 1 μm), which is determined by the diffraction limit of optical radiation.
19 schema:genre research_article
20 schema:inLanguage en
21 schema:isAccessibleForFree false
22 schema:isPartOf N39b697ae83e646e094badb422e97fb1f
23 N8dad3bed054c437d994321d967588644
24 sg:journal.1052174
25 schema:name Formation of nanojets and nanodroplets by an ultrashort laser pulse at focusing in the diffraction limit
26 schema:pagination 4-10
27 schema:productId N810fb2370cf0447f810b7d405e453b01
28 Nb14c65a34aa44c929271c923a82d5c26
29 Nf1db2bab42004688af360e582438ff4c
30 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036530230
31 https://doi.org/10.1134/s0021364014130050
32 schema:sdDatePublished 2019-04-11T01:57
33 schema:sdLicense https://scigraph.springernature.com/explorer/license/
34 schema:sdPublisher Nc107e81f62c84505b2fbaf4f51a90db5
35 schema:url http://link.springer.com/10.1134/S0021364014130050
36 sgo:license sg:explorer/license/
37 sgo:sdDataset articles
38 rdf:type schema:ScholarlyArticle
39 N0ad985850ad04a6a9aa03ac140e45101 rdf:first sg:person.016077213477.15
40 rdf:rest rdf:nil
41 N39b697ae83e646e094badb422e97fb1f schema:volumeNumber 100
42 rdf:type schema:PublicationVolume
43 N810fb2370cf0447f810b7d405e453b01 schema:name doi
44 schema:value 10.1134/s0021364014130050
45 rdf:type schema:PropertyValue
46 N8dad3bed054c437d994321d967588644 schema:issueNumber 1
47 rdf:type schema:PublicationIssue
48 Na57c4aebda64406bae82dbd2041211ec rdf:first sg:person.013473613553.02
49 rdf:rest N0ad985850ad04a6a9aa03ac140e45101
50 Nb14c65a34aa44c929271c923a82d5c26 schema:name readcube_id
51 schema:value ae03a4cc4f097a16702d1c6835f62b64a950ec8783e7998ba950eace082bf13e
52 rdf:type schema:PropertyValue
53 Nc107e81f62c84505b2fbaf4f51a90db5 schema:name Springer Nature - SN SciGraph project
54 rdf:type schema:Organization
55 Nf1db2bab42004688af360e582438ff4c schema:name dimensions_id
56 schema:value pub.1036530230
57 rdf:type schema:PropertyValue
58 anzsrc-for:02 schema:inDefinedTermSet anzsrc-for:
59 schema:name Physical Sciences
60 rdf:type schema:DefinedTerm
61 anzsrc-for:0299 schema:inDefinedTermSet anzsrc-for:
62 schema:name Other Physical Sciences
63 rdf:type schema:DefinedTerm
64 sg:journal.1052174 schema:issn 0021-3640
65 1090-6487
66 schema:name JETP Letters
67 rdf:type schema:Periodical
68 sg:person.013473613553.02 schema:affiliation https://www.grid.ac/institutes/grid.4886.2
69 schema:familyName Inogamov
70 schema:givenName N. A.
71 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013473613553.02
72 rdf:type schema:Person
73 sg:person.016077213477.15 schema:affiliation https://www.grid.ac/institutes/grid.4886.2
74 schema:familyName Zhakhovskii
75 schema:givenName V. V.
76 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016077213477.15
77 rdf:type schema:Person
78 sg:pub.10.1007/s00339-004-2590-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001499851
79 https://doi.org/10.1007/s00339-004-2590-5
80 rdf:type schema:CreativeWork
81 sg:pub.10.1007/s00339-005-3319-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032438523
82 https://doi.org/10.1007/s00339-005-3319-9
83 rdf:type schema:CreativeWork
84 sg:pub.10.1007/s00339-008-4712-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1034502236
85 https://doi.org/10.1007/s00339-008-4712-y
86 rdf:type schema:CreativeWork
87 sg:pub.10.1007/s00339-008-4859-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000862558
88 https://doi.org/10.1007/s00339-008-4859-6
89 rdf:type schema:CreativeWork
90 sg:pub.10.1007/s00339-013-7656-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047247321
91 https://doi.org/10.1007/s00339-013-7656-9
92 rdf:type schema:CreativeWork
93 https://doi.org/10.1016/j.apsusc.2007.01.080 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035460276
94 rdf:type schema:CreativeWork
95 https://doi.org/10.1016/j.apsusc.2009.04.082 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003513558
96 rdf:type schema:CreativeWork
97 https://doi.org/10.1063/1.3276161 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057929839
98 rdf:type schema:CreativeWork
99 https://doi.org/10.1103/physrevb.82.064113 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060633362
100 rdf:type schema:CreativeWork
101 https://doi.org/10.1103/physrevlett.86.2066 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060822657
102 rdf:type schema:CreativeWork
103 https://doi.org/10.1143/jjap.42.l1452 schema:sameAs https://app.dimensions.ai/details/publication/pub.1063071202
104 rdf:type schema:CreativeWork
105 https://doi.org/10.1364/oe.20.024864 schema:sameAs https://app.dimensions.ai/details/publication/pub.1065201732
106 rdf:type schema:CreativeWork
107 https://www.grid.ac/institutes/grid.4886.2 schema:alternateName Russian Academy of Sciences
108 schema:name All-Russia Research Institute of Automatics, ul. Sushchevskaya 22, 127055, Moscow, Russia
109 Joint Institute for High Temperatures, Russian Academy of Sciences, ul. Izhorskaya 13/19, 125412, Moscow, Russia
110 Landau Institute for Theoretical Physics, Russian Academy of Sciences, 142432, Chernogolovka, Moscow region, Russia
111 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...