Influence of defects on the conductivity of graphene within the effective theory approach View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2013-12

AUTHORS

S. N. Valgushev, E. V. Luschevskaya, O. V. Pavlovsky, M. I. Polikarpov, M. V. Ulybyshev

ABSTRACT

The results of the Monte Carlo simulations of graphene with structural defects are presented. The calculations are performed within an effective quantum field theory with non-compact 3 + 1-dimensional Abelian gauge field and 2 + 1-dimensional Kogut-Susskind fermions. It was found that defects shift the semimetal-insulator phase transition point towards higher values of a substrate permittivity. More... »

PAGES

389-392

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1134/s0021364013200150

DOI

http://dx.doi.org/10.1134/s0021364013200150

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1032655937


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Pure Mathematics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Moscow Institute of Physics and Technology", 
          "id": "https://www.grid.ac/institutes/grid.18763.3b", 
          "name": [
            "Alikhanov Institute for Theoretical and Experimental Physics, 117218, Moscow, Russia", 
            "Moscow Institute of Physics and Technology (State University), 141700, Dolgoprudnyi, Moscow region, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Valgushev", 
        "givenName": "S. N.", 
        "id": "sg:person.0741337061.41", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0741337061.41"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Institute for Theoretical and Experimental Physics", 
          "id": "https://www.grid.ac/institutes/grid.21626.31", 
          "name": [
            "Alikhanov Institute for Theoretical and Experimental Physics, 117218, Moscow, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Luschevskaya", 
        "givenName": "E. V.", 
        "id": "sg:person.010635027117.18", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010635027117.18"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Moscow State University", 
          "id": "https://www.grid.ac/institutes/grid.14476.30", 
          "name": [
            "Alikhanov Institute for Theoretical and Experimental Physics, 117218, Moscow, Russia", 
            "Moscow State University, 119899, Moscow, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Pavlovsky", 
        "givenName": "O. V.", 
        "id": "sg:person.014312731336.36", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014312731336.36"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Moscow Institute of Physics and Technology", 
          "id": "https://www.grid.ac/institutes/grid.18763.3b", 
          "name": [
            "Alikhanov Institute for Theoretical and Experimental Physics, 117218, Moscow, Russia", 
            "Moscow Institute of Physics and Technology (State University), 141700, Dolgoprudnyi, Moscow region, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Polikarpov", 
        "givenName": "M. I.", 
        "id": "sg:person.014215752171.59", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014215752171.59"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Moscow State University", 
          "id": "https://www.grid.ac/institutes/grid.14476.30", 
          "name": [
            "Alikhanov Institute for Theoretical and Experimental Physics, 117218, Moscow, Russia", 
            "Moscow State University, 119899, Moscow, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ulybyshev", 
        "givenName": "M. V.", 
        "id": "sg:person.010654275615.68", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010654275615.68"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1103/physrevlett.102.026802", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015040065"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.102.026802", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015040065"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.86.045107", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017312143"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.86.045107", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017312143"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1102896", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019008412"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.78.165423", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042786267"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.78.165423", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042786267"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/revmodphys.81.109", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050408744"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/revmodphys.81.109", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050408744"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nmat1849", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052791836", 
          "https://doi.org/10.1038/nmat1849"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/nl301922d", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056219497"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.53.2449", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060790810"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.53.2449", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060790810"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1209/0295-5075/3/5/006", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064230432"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1017/cbo9780511470783", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1098707970"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1142/6065", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1098962010"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2013-12", 
    "datePublishedReg": "2013-12-01", 
    "description": "The results of the Monte Carlo simulations of graphene with structural defects are presented. The calculations are performed within an effective quantum field theory with non-compact 3 + 1-dimensional Abelian gauge field and 2 + 1-dimensional Kogut-Susskind fermions. It was found that defects shift the semimetal-insulator phase transition point towards higher values of a substrate permittivity.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1134/s0021364013200150", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1052174", 
        "issn": [
          "0021-3640", 
          "1090-6487"
        ], 
        "name": "JETP Letters", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "7", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "98"
      }
    ], 
    "name": "Influence of defects on the conductivity of graphene within the effective theory approach", 
    "pagination": "389-392", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "9b91c588f1d0ba0a64fbdbee50c6448ce7dd706f9ebda6aa394afaa10a5a6432"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1134/s0021364013200150"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1032655937"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1134/s0021364013200150", 
      "https://app.dimensions.ai/details/publication/pub.1032655937"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T14:58", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8663_00000500.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1134/S0021364013200150"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1134/s0021364013200150'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1134/s0021364013200150'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1134/s0021364013200150'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1134/s0021364013200150'


 

This table displays all metadata directly associated to this object as RDF triples.

131 TRIPLES      21 PREDICATES      38 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1134/s0021364013200150 schema:about anzsrc-for:01
2 anzsrc-for:0101
3 schema:author N275221f0ef0c449f86d0ccdf5ff568c9
4 schema:citation sg:pub.10.1038/nmat1849
5 https://doi.org/10.1017/cbo9780511470783
6 https://doi.org/10.1021/nl301922d
7 https://doi.org/10.1103/physrevb.78.165423
8 https://doi.org/10.1103/physrevb.86.045107
9 https://doi.org/10.1103/physrevlett.102.026802
10 https://doi.org/10.1103/physrevlett.53.2449
11 https://doi.org/10.1103/revmodphys.81.109
12 https://doi.org/10.1126/science.1102896
13 https://doi.org/10.1142/6065
14 https://doi.org/10.1209/0295-5075/3/5/006
15 schema:datePublished 2013-12
16 schema:datePublishedReg 2013-12-01
17 schema:description The results of the Monte Carlo simulations of graphene with structural defects are presented. The calculations are performed within an effective quantum field theory with non-compact 3 + 1-dimensional Abelian gauge field and 2 + 1-dimensional Kogut-Susskind fermions. It was found that defects shift the semimetal-insulator phase transition point towards higher values of a substrate permittivity.
18 schema:genre research_article
19 schema:inLanguage en
20 schema:isAccessibleForFree true
21 schema:isPartOf Nb276a3bb0c0e446ebd3e0dbd1dbb91cf
22 Nc2b60a27a5b748dda787cd7f6cf70fa1
23 sg:journal.1052174
24 schema:name Influence of defects on the conductivity of graphene within the effective theory approach
25 schema:pagination 389-392
26 schema:productId Nb4be3cce67654533a7cf5a2862d2f058
27 Nb859246d0f774e688154381626cdb799
28 Ne8cd089c0426494ca127646ac09549c8
29 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032655937
30 https://doi.org/10.1134/s0021364013200150
31 schema:sdDatePublished 2019-04-10T14:58
32 schema:sdLicense https://scigraph.springernature.com/explorer/license/
33 schema:sdPublisher N624dbb16b71a4465b112d8b789026d2e
34 schema:url http://link.springer.com/10.1134/S0021364013200150
35 sgo:license sg:explorer/license/
36 sgo:sdDataset articles
37 rdf:type schema:ScholarlyArticle
38 N275221f0ef0c449f86d0ccdf5ff568c9 rdf:first sg:person.0741337061.41
39 rdf:rest N5a9ee79d5765459ead01d9d3eac073ab
40 N42b7dba6b1d247e9932b2a836a80ad77 rdf:first sg:person.014312731336.36
41 rdf:rest Nbaa04d81e6df4b0aa7483925c50953ac
42 N53b89051153c4abda99b3a7a1cfb49e4 rdf:first sg:person.010654275615.68
43 rdf:rest rdf:nil
44 N5a9ee79d5765459ead01d9d3eac073ab rdf:first sg:person.010635027117.18
45 rdf:rest N42b7dba6b1d247e9932b2a836a80ad77
46 N624dbb16b71a4465b112d8b789026d2e schema:name Springer Nature - SN SciGraph project
47 rdf:type schema:Organization
48 Nb276a3bb0c0e446ebd3e0dbd1dbb91cf schema:volumeNumber 98
49 rdf:type schema:PublicationVolume
50 Nb4be3cce67654533a7cf5a2862d2f058 schema:name doi
51 schema:value 10.1134/s0021364013200150
52 rdf:type schema:PropertyValue
53 Nb859246d0f774e688154381626cdb799 schema:name readcube_id
54 schema:value 9b91c588f1d0ba0a64fbdbee50c6448ce7dd706f9ebda6aa394afaa10a5a6432
55 rdf:type schema:PropertyValue
56 Nbaa04d81e6df4b0aa7483925c50953ac rdf:first sg:person.014215752171.59
57 rdf:rest N53b89051153c4abda99b3a7a1cfb49e4
58 Nc2b60a27a5b748dda787cd7f6cf70fa1 schema:issueNumber 7
59 rdf:type schema:PublicationIssue
60 Ne8cd089c0426494ca127646ac09549c8 schema:name dimensions_id
61 schema:value pub.1032655937
62 rdf:type schema:PropertyValue
63 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
64 schema:name Mathematical Sciences
65 rdf:type schema:DefinedTerm
66 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
67 schema:name Pure Mathematics
68 rdf:type schema:DefinedTerm
69 sg:journal.1052174 schema:issn 0021-3640
70 1090-6487
71 schema:name JETP Letters
72 rdf:type schema:Periodical
73 sg:person.010635027117.18 schema:affiliation https://www.grid.ac/institutes/grid.21626.31
74 schema:familyName Luschevskaya
75 schema:givenName E. V.
76 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010635027117.18
77 rdf:type schema:Person
78 sg:person.010654275615.68 schema:affiliation https://www.grid.ac/institutes/grid.14476.30
79 schema:familyName Ulybyshev
80 schema:givenName M. V.
81 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010654275615.68
82 rdf:type schema:Person
83 sg:person.014215752171.59 schema:affiliation https://www.grid.ac/institutes/grid.18763.3b
84 schema:familyName Polikarpov
85 schema:givenName M. I.
86 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014215752171.59
87 rdf:type schema:Person
88 sg:person.014312731336.36 schema:affiliation https://www.grid.ac/institutes/grid.14476.30
89 schema:familyName Pavlovsky
90 schema:givenName O. V.
91 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014312731336.36
92 rdf:type schema:Person
93 sg:person.0741337061.41 schema:affiliation https://www.grid.ac/institutes/grid.18763.3b
94 schema:familyName Valgushev
95 schema:givenName S. N.
96 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0741337061.41
97 rdf:type schema:Person
98 sg:pub.10.1038/nmat1849 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052791836
99 https://doi.org/10.1038/nmat1849
100 rdf:type schema:CreativeWork
101 https://doi.org/10.1017/cbo9780511470783 schema:sameAs https://app.dimensions.ai/details/publication/pub.1098707970
102 rdf:type schema:CreativeWork
103 https://doi.org/10.1021/nl301922d schema:sameAs https://app.dimensions.ai/details/publication/pub.1056219497
104 rdf:type schema:CreativeWork
105 https://doi.org/10.1103/physrevb.78.165423 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042786267
106 rdf:type schema:CreativeWork
107 https://doi.org/10.1103/physrevb.86.045107 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017312143
108 rdf:type schema:CreativeWork
109 https://doi.org/10.1103/physrevlett.102.026802 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015040065
110 rdf:type schema:CreativeWork
111 https://doi.org/10.1103/physrevlett.53.2449 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060790810
112 rdf:type schema:CreativeWork
113 https://doi.org/10.1103/revmodphys.81.109 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050408744
114 rdf:type schema:CreativeWork
115 https://doi.org/10.1126/science.1102896 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019008412
116 rdf:type schema:CreativeWork
117 https://doi.org/10.1142/6065 schema:sameAs https://app.dimensions.ai/details/publication/pub.1098962010
118 rdf:type schema:CreativeWork
119 https://doi.org/10.1209/0295-5075/3/5/006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064230432
120 rdf:type schema:CreativeWork
121 https://www.grid.ac/institutes/grid.14476.30 schema:alternateName Moscow State University
122 schema:name Alikhanov Institute for Theoretical and Experimental Physics, 117218, Moscow, Russia
123 Moscow State University, 119899, Moscow, Russia
124 rdf:type schema:Organization
125 https://www.grid.ac/institutes/grid.18763.3b schema:alternateName Moscow Institute of Physics and Technology
126 schema:name Alikhanov Institute for Theoretical and Experimental Physics, 117218, Moscow, Russia
127 Moscow Institute of Physics and Technology (State University), 141700, Dolgoprudnyi, Moscow region, Russia
128 rdf:type schema:Organization
129 https://www.grid.ac/institutes/grid.21626.31 schema:alternateName Institute for Theoretical and Experimental Physics
130 schema:name Alikhanov Institute for Theoretical and Experimental Physics, 117218, Moscow, Russia
131 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...