Precursors in gas-liquid mixtures View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2013-10

AUTHORS

V. G. Gasenko, R. S. Gorelik, V. E. Nakoryakov, L. S. Timkin

ABSTRACT

Two types of precursors propagating at the speed of sound in a pure liquid have been revealed in the experiments on the evolution of pressure pulses in a gas-liquid mixture; at the same time, the main pressure pulse propagates at a low equilibrium speed of sound and its evolution is described by the Burgers-Korteweg-de Vries equation. The first high-frequency precursor is a complete analog of a classical Sommerfeld precursor, because the resonance dispersion equation for a bubble mixture coincides with that for insulators in the Lorentz model, and oscillates at a frequency close to the “plasma frequency.” The second low-frequency precursor has been revealed in this work. The frequency of the low-frequency precursor is close to the resonance frequency of pulsations of bubbles, which is almost an order of magnitude lower than the frequency of the high-frequency precursor. The low-frequency precursor has a much larger amplitude of pulsations and smaller damping and is not described within the homogeneous model of the gas-liquid mixture. The observed phenomenon of low-frequency precursors has been explained within a simple heterogeneous model of a bubble liquid. More... »

PAGES

195-200

Identifiers

URI

http://scigraph.springernature.com/pub.10.1134/s0021364013170049

DOI

http://dx.doi.org/10.1134/s0021364013170049

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1005674696


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0104", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Statistics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Novosibirsk State University", 
          "id": "https://www.grid.ac/institutes/grid.4605.7", 
          "name": [
            "Kutateladze Institute of Thermophysics, Siberian Branch, Russian Academy of Sciences, pr. Akademika Lavrent\u2019eva 1, 630090, Novosibirsk, Russia", 
            "Novosibirsk State University, ul. Pirogova 2, 630090, Novosibirsk, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Gasenko", 
        "givenName": "V. G.", 
        "id": "sg:person.015470326443.78", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015470326443.78"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Russian Academy of Sciences", 
          "id": "https://www.grid.ac/institutes/grid.4886.2", 
          "name": [
            "Kutateladze Institute of Thermophysics, Siberian Branch, Russian Academy of Sciences, pr. Akademika Lavrent\u2019eva 1, 630090, Novosibirsk, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Gorelik", 
        "givenName": "R. S.", 
        "id": "sg:person.015663720105.97", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015663720105.97"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Novosibirsk State University", 
          "id": "https://www.grid.ac/institutes/grid.4605.7", 
          "name": [
            "Kutateladze Institute of Thermophysics, Siberian Branch, Russian Academy of Sciences, pr. Akademika Lavrent\u2019eva 1, 630090, Novosibirsk, Russia", 
            "Novosibirsk State University, ul. Pirogova 2, 630090, Novosibirsk, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Nakoryakov", 
        "givenName": "V. E.", 
        "id": "sg:person.07440273776.13", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07440273776.13"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Russian Academy of Sciences", 
          "id": "https://www.grid.ac/institutes/grid.4886.2", 
          "name": [
            "Kutateladze Institute of Thermophysics, Siberian Branch, Russian Academy of Sciences, pr. Akademika Lavrent\u2019eva 1, 630090, Novosibirsk, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Timkin", 
        "givenName": "L. S.", 
        "id": "sg:person.012676016105.52", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012676016105.52"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/j.ijmultiphaseflow.2011.03.007", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000771150"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/andp.19143491003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006118353"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1134/s1810232808030028", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006628038", 
          "https://doi.org/10.1134/s1810232808030028"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1134/1.1608981", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006996881", 
          "https://doi.org/10.1134/1.1608981"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/andp.19143491002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020888214"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.86.013837", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030470009"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.86.013837", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030470009"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1134/s1063771006050125", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031026464", 
          "https://doi.org/10.1134/s1063771006050125"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1041233862", 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-642-61227-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041233862", 
          "https://doi.org/10.1007/978-3-642-61227-5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-642-61227-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041233862", 
          "https://doi.org/10.1007/978-3-642-61227-5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1017/s0022112075002315", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053766930"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1017/s0022112075002315", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053766930"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1017/s0022112075002315", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053766930"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1070/pu1976v019n02abeh005138", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058170403"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.44.r5353", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060484639"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.44.r5353", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060484639"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.64.056607", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060727602"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.64.056607", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060727602"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.22.1201", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060772130"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.22.1201", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060772130"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.80.3503", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060817293"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.80.3503", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060817293"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.84.6050", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060821526"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.84.6050", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060821526"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.92.193903", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060828328"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.92.193903", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060828328"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1121/1.1907955", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062273789"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1121/1.1916508", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062280902"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2013-10", 
    "datePublishedReg": "2013-10-01", 
    "description": "Two types of precursors propagating at the speed of sound in a pure liquid have been revealed in the experiments on the evolution of pressure pulses in a gas-liquid mixture; at the same time, the main pressure pulse propagates at a low equilibrium speed of sound and its evolution is described by the Burgers-Korteweg-de Vries equation. The first high-frequency precursor is a complete analog of a classical Sommerfeld precursor, because the resonance dispersion equation for a bubble mixture coincides with that for insulators in the Lorentz model, and oscillates at a frequency close to the \u201cplasma frequency.\u201d The second low-frequency precursor has been revealed in this work. The frequency of the low-frequency precursor is close to the resonance frequency of pulsations of bubbles, which is almost an order of magnitude lower than the frequency of the high-frequency precursor. The low-frequency precursor has a much larger amplitude of pulsations and smaller damping and is not described within the homogeneous model of the gas-liquid mixture. The observed phenomenon of low-frequency precursors has been explained within a simple heterogeneous model of a bubble liquid.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1134/s0021364013170049", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1052174", 
        "issn": [
          "0021-3640", 
          "1090-6487"
        ], 
        "name": "JETP Letters", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "4", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "98"
      }
    ], 
    "name": "Precursors in gas-liquid mixtures", 
    "pagination": "195-200", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "1b09842751e982ea70fc9ead81c420f0d68e66ed159c5ad78af91e55cd8e25a2"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1134/s0021364013170049"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1005674696"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1134/s0021364013170049", 
      "https://app.dimensions.ai/details/publication/pub.1005674696"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T15:48", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8664_00000498.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1134/S0021364013170049"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1134/s0021364013170049'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1134/s0021364013170049'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1134/s0021364013170049'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1134/s0021364013170049'


 

This table displays all metadata directly associated to this object as RDF triples.

146 TRIPLES      21 PREDICATES      46 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1134/s0021364013170049 schema:about anzsrc-for:01
2 anzsrc-for:0104
3 schema:author N38f4c4f3e92c4f769a4e83a08b915a8d
4 schema:citation sg:pub.10.1007/978-3-642-61227-5
5 sg:pub.10.1134/1.1608981
6 sg:pub.10.1134/s1063771006050125
7 sg:pub.10.1134/s1810232808030028
8 https://app.dimensions.ai/details/publication/pub.1041233862
9 https://doi.org/10.1002/andp.19143491002
10 https://doi.org/10.1002/andp.19143491003
11 https://doi.org/10.1016/j.ijmultiphaseflow.2011.03.007
12 https://doi.org/10.1017/s0022112075002315
13 https://doi.org/10.1070/pu1976v019n02abeh005138
14 https://doi.org/10.1103/physreva.44.r5353
15 https://doi.org/10.1103/physreva.86.013837
16 https://doi.org/10.1103/physreve.64.056607
17 https://doi.org/10.1103/physrevlett.22.1201
18 https://doi.org/10.1103/physrevlett.80.3503
19 https://doi.org/10.1103/physrevlett.84.6050
20 https://doi.org/10.1103/physrevlett.92.193903
21 https://doi.org/10.1121/1.1907955
22 https://doi.org/10.1121/1.1916508
23 schema:datePublished 2013-10
24 schema:datePublishedReg 2013-10-01
25 schema:description Two types of precursors propagating at the speed of sound in a pure liquid have been revealed in the experiments on the evolution of pressure pulses in a gas-liquid mixture; at the same time, the main pressure pulse propagates at a low equilibrium speed of sound and its evolution is described by the Burgers-Korteweg-de Vries equation. The first high-frequency precursor is a complete analog of a classical Sommerfeld precursor, because the resonance dispersion equation for a bubble mixture coincides with that for insulators in the Lorentz model, and oscillates at a frequency close to the “plasma frequency.” The second low-frequency precursor has been revealed in this work. The frequency of the low-frequency precursor is close to the resonance frequency of pulsations of bubbles, which is almost an order of magnitude lower than the frequency of the high-frequency precursor. The low-frequency precursor has a much larger amplitude of pulsations and smaller damping and is not described within the homogeneous model of the gas-liquid mixture. The observed phenomenon of low-frequency precursors has been explained within a simple heterogeneous model of a bubble liquid.
26 schema:genre research_article
27 schema:inLanguage en
28 schema:isAccessibleForFree false
29 schema:isPartOf N8ebe8191b20e44daa829f0db804cd67a
30 Nd36bc5932dfa4db1b03156ddc0aed80b
31 sg:journal.1052174
32 schema:name Precursors in gas-liquid mixtures
33 schema:pagination 195-200
34 schema:productId N28c3e3c4d272494f8a5027bb10549d7c
35 N46459f91ba7145bf8675fa909fbe21d2
36 N9fcb5b23d7b94b448dbf07bb12c97e78
37 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005674696
38 https://doi.org/10.1134/s0021364013170049
39 schema:sdDatePublished 2019-04-10T15:48
40 schema:sdLicense https://scigraph.springernature.com/explorer/license/
41 schema:sdPublisher Na2fb559b77ef4abf9c785abbbf18cb6c
42 schema:url http://link.springer.com/10.1134/S0021364013170049
43 sgo:license sg:explorer/license/
44 sgo:sdDataset articles
45 rdf:type schema:ScholarlyArticle
46 N28c3e3c4d272494f8a5027bb10549d7c schema:name doi
47 schema:value 10.1134/s0021364013170049
48 rdf:type schema:PropertyValue
49 N38f4c4f3e92c4f769a4e83a08b915a8d rdf:first sg:person.015470326443.78
50 rdf:rest Na1f042abc514471cadb8a01bd9e279b9
51 N46459f91ba7145bf8675fa909fbe21d2 schema:name readcube_id
52 schema:value 1b09842751e982ea70fc9ead81c420f0d68e66ed159c5ad78af91e55cd8e25a2
53 rdf:type schema:PropertyValue
54 N8ebe8191b20e44daa829f0db804cd67a schema:volumeNumber 98
55 rdf:type schema:PublicationVolume
56 N9fcb5b23d7b94b448dbf07bb12c97e78 schema:name dimensions_id
57 schema:value pub.1005674696
58 rdf:type schema:PropertyValue
59 Na1f042abc514471cadb8a01bd9e279b9 rdf:first sg:person.015663720105.97
60 rdf:rest Ne0675d7343bd4aa1905649ae01160ec0
61 Na2fb559b77ef4abf9c785abbbf18cb6c schema:name Springer Nature - SN SciGraph project
62 rdf:type schema:Organization
63 Nd36bc5932dfa4db1b03156ddc0aed80b schema:issueNumber 4
64 rdf:type schema:PublicationIssue
65 Ne0675d7343bd4aa1905649ae01160ec0 rdf:first sg:person.07440273776.13
66 rdf:rest Nffe8555db5454ababfc925c49627a0dd
67 Nffe8555db5454ababfc925c49627a0dd rdf:first sg:person.012676016105.52
68 rdf:rest rdf:nil
69 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
70 schema:name Mathematical Sciences
71 rdf:type schema:DefinedTerm
72 anzsrc-for:0104 schema:inDefinedTermSet anzsrc-for:
73 schema:name Statistics
74 rdf:type schema:DefinedTerm
75 sg:journal.1052174 schema:issn 0021-3640
76 1090-6487
77 schema:name JETP Letters
78 rdf:type schema:Periodical
79 sg:person.012676016105.52 schema:affiliation https://www.grid.ac/institutes/grid.4886.2
80 schema:familyName Timkin
81 schema:givenName L. S.
82 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012676016105.52
83 rdf:type schema:Person
84 sg:person.015470326443.78 schema:affiliation https://www.grid.ac/institutes/grid.4605.7
85 schema:familyName Gasenko
86 schema:givenName V. G.
87 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015470326443.78
88 rdf:type schema:Person
89 sg:person.015663720105.97 schema:affiliation https://www.grid.ac/institutes/grid.4886.2
90 schema:familyName Gorelik
91 schema:givenName R. S.
92 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015663720105.97
93 rdf:type schema:Person
94 sg:person.07440273776.13 schema:affiliation https://www.grid.ac/institutes/grid.4605.7
95 schema:familyName Nakoryakov
96 schema:givenName V. E.
97 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07440273776.13
98 rdf:type schema:Person
99 sg:pub.10.1007/978-3-642-61227-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041233862
100 https://doi.org/10.1007/978-3-642-61227-5
101 rdf:type schema:CreativeWork
102 sg:pub.10.1134/1.1608981 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006996881
103 https://doi.org/10.1134/1.1608981
104 rdf:type schema:CreativeWork
105 sg:pub.10.1134/s1063771006050125 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031026464
106 https://doi.org/10.1134/s1063771006050125
107 rdf:type schema:CreativeWork
108 sg:pub.10.1134/s1810232808030028 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006628038
109 https://doi.org/10.1134/s1810232808030028
110 rdf:type schema:CreativeWork
111 https://app.dimensions.ai/details/publication/pub.1041233862 schema:CreativeWork
112 https://doi.org/10.1002/andp.19143491002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020888214
113 rdf:type schema:CreativeWork
114 https://doi.org/10.1002/andp.19143491003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006118353
115 rdf:type schema:CreativeWork
116 https://doi.org/10.1016/j.ijmultiphaseflow.2011.03.007 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000771150
117 rdf:type schema:CreativeWork
118 https://doi.org/10.1017/s0022112075002315 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053766930
119 rdf:type schema:CreativeWork
120 https://doi.org/10.1070/pu1976v019n02abeh005138 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058170403
121 rdf:type schema:CreativeWork
122 https://doi.org/10.1103/physreva.44.r5353 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060484639
123 rdf:type schema:CreativeWork
124 https://doi.org/10.1103/physreva.86.013837 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030470009
125 rdf:type schema:CreativeWork
126 https://doi.org/10.1103/physreve.64.056607 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060727602
127 rdf:type schema:CreativeWork
128 https://doi.org/10.1103/physrevlett.22.1201 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060772130
129 rdf:type schema:CreativeWork
130 https://doi.org/10.1103/physrevlett.80.3503 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060817293
131 rdf:type schema:CreativeWork
132 https://doi.org/10.1103/physrevlett.84.6050 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060821526
133 rdf:type schema:CreativeWork
134 https://doi.org/10.1103/physrevlett.92.193903 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060828328
135 rdf:type schema:CreativeWork
136 https://doi.org/10.1121/1.1907955 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062273789
137 rdf:type schema:CreativeWork
138 https://doi.org/10.1121/1.1916508 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062280902
139 rdf:type schema:CreativeWork
140 https://www.grid.ac/institutes/grid.4605.7 schema:alternateName Novosibirsk State University
141 schema:name Kutateladze Institute of Thermophysics, Siberian Branch, Russian Academy of Sciences, pr. Akademika Lavrent’eva 1, 630090, Novosibirsk, Russia
142 Novosibirsk State University, ul. Pirogova 2, 630090, Novosibirsk, Russia
143 rdf:type schema:Organization
144 https://www.grid.ac/institutes/grid.4886.2 schema:alternateName Russian Academy of Sciences
145 schema:name Kutateladze Institute of Thermophysics, Siberian Branch, Russian Academy of Sciences, pr. Akademika Lavrent’eva 1, 630090, Novosibirsk, Russia
146 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...