Superelasticity and the propagation of shock waves in crystals View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2011-04

AUTHORS

N. A. Inogamov, V. V. Zhakhovskii, V. A. Khokhlov, V. V. Shepelev

ABSTRACT

The separation of a shock wave into an elastic precursor and a plastic wave is a characteristic phenomenon occurring only in solid media. The existence of the elastic shock wave at pressures p ≈ 10 GPa, which is one or two orders of magnitude higher than the dynamic elastic limit, has been detected in recent numerical calculations and a femtosecond laser experiment. The plastic shock wave has no time to be formed in these ultrashort waves at p ≈ 10 GPa. The processes of the formation and propagation of the elastic and plastic waves in aluminum at higher pressures obtained by means of femtosecond lasers have been analyzed in this work. It has been found that the elastic precursor survives even under the conditions when the pressure behind the plastic front reaches a giant value p ∼ 1 Mbar at which the melting of the metal begins. It has been shown that superelasticity should be taken into account to correctly interpret the preceding laser experiments. More... »

PAGES

226-232

Identifiers

URI

http://scigraph.springernature.com/pub.10.1134/s0021364011040096

DOI

http://dx.doi.org/10.1134/s0021364011040096

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1024299842


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0205", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Optical Physics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/02", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Russian Academy of Sciences", 
          "id": "https://www.grid.ac/institutes/grid.4886.2", 
          "name": [
            "Landau Institute for Theoretical Physics, Russian Academy of Sciences, 142432, Chernogolovka, Moscow region, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Inogamov", 
        "givenName": "N. A.", 
        "id": "sg:person.013473613553.02", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013473613553.02"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of South Florida", 
          "id": "https://www.grid.ac/institutes/grid.170693.a", 
          "name": [
            "Joint Institute for High Temperatures, Russian Academy of Sciences, ul. Izhorskaya 13/19, 125412, Moscow, Russia", 
            "Department of Physics, University of South Florida, 33620, Tampa, Florida, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zhakhovskii", 
        "givenName": "V. V.", 
        "id": "sg:person.016077213477.15", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016077213477.15"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Russian Academy of Sciences", 
          "id": "https://www.grid.ac/institutes/grid.4886.2", 
          "name": [
            "Landau Institute for Theoretical Physics, Russian Academy of Sciences, 142432, Chernogolovka, Moscow region, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Khokhlov", 
        "givenName": "V. A.", 
        "id": "sg:person.011630621137.82", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011630621137.82"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Russian Academy of Sciences", 
          "id": "https://www.grid.ac/institutes/grid.4886.2", 
          "name": [
            "Institute for Computer Aided Design, Russian Academy of Sciences, Vtoraya Brestskaya ul. 19/18, 123056, Moscow, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Shepelev", 
        "givenName": "V. V.", 
        "id": "sg:person.015115430237.70", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015115430237.70"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/s00339-008-4608-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010890690", 
          "https://doi.org/10.1007/s00339-008-4608-x"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00339-008-4608-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010890690", 
          "https://doi.org/10.1007/s00339-008-4608-x"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0022-3727/42/4/045502", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030278826"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/ctpp.201010111", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045011579"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.1657194", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057735101"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.82.064113", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060633362"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.82.064113", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060633362"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.75.252", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060811848"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.75.252", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060811848"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.77.3359", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060814081"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.77.3359", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060814081"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.85.3205", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060821989"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.85.3205", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060821989"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1364/josab.23.001954", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1065171750"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3367/ufnr.0177.200708a.0809", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1071220590"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2011-04", 
    "datePublishedReg": "2011-04-01", 
    "description": "The separation of a shock wave into an elastic precursor and a plastic wave is a characteristic phenomenon occurring only in solid media. The existence of the elastic shock wave at pressures p \u2248 10 GPa, which is one or two orders of magnitude higher than the dynamic elastic limit, has been detected in recent numerical calculations and a femtosecond laser experiment. The plastic shock wave has no time to be formed in these ultrashort waves at p \u2248 10 GPa. The processes of the formation and propagation of the elastic and plastic waves in aluminum at higher pressures obtained by means of femtosecond lasers have been analyzed in this work. It has been found that the elastic precursor survives even under the conditions when the pressure behind the plastic front reaches a giant value p \u223c 1 Mbar at which the melting of the metal begins. It has been shown that superelasticity should be taken into account to correctly interpret the preceding laser experiments.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1134/s0021364011040096", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1052174", 
        "issn": [
          "0021-3640", 
          "1090-6487"
        ], 
        "name": "JETP Letters", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "4", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "93"
      }
    ], 
    "name": "Superelasticity and the propagation of shock waves in crystals", 
    "pagination": "226-232", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "73c483a6d26aa35b745e75f1167790b853ea7b9725655f8c0466b5e9980ef10d"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1134/s0021364011040096"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1024299842"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1134/s0021364011040096", 
      "https://app.dimensions.ai/details/publication/pub.1024299842"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T00:13", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8695_00000499.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1134/S0021364011040096"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1134/s0021364011040096'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1134/s0021364011040096'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1134/s0021364011040096'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1134/s0021364011040096'


 

This table displays all metadata directly associated to this object as RDF triples.

118 TRIPLES      21 PREDICATES      37 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1134/s0021364011040096 schema:about anzsrc-for:02
2 anzsrc-for:0205
3 schema:author Ndf2a537e248f4533b366611fb7f33906
4 schema:citation sg:pub.10.1007/s00339-008-4608-x
5 https://doi.org/10.1002/ctpp.201010111
6 https://doi.org/10.1063/1.1657194
7 https://doi.org/10.1088/0022-3727/42/4/045502
8 https://doi.org/10.1103/physrevb.82.064113
9 https://doi.org/10.1103/physrevlett.75.252
10 https://doi.org/10.1103/physrevlett.77.3359
11 https://doi.org/10.1103/physrevlett.85.3205
12 https://doi.org/10.1364/josab.23.001954
13 https://doi.org/10.3367/ufnr.0177.200708a.0809
14 schema:datePublished 2011-04
15 schema:datePublishedReg 2011-04-01
16 schema:description The separation of a shock wave into an elastic precursor and a plastic wave is a characteristic phenomenon occurring only in solid media. The existence of the elastic shock wave at pressures p ≈ 10 GPa, which is one or two orders of magnitude higher than the dynamic elastic limit, has been detected in recent numerical calculations and a femtosecond laser experiment. The plastic shock wave has no time to be formed in these ultrashort waves at p ≈ 10 GPa. The processes of the formation and propagation of the elastic and plastic waves in aluminum at higher pressures obtained by means of femtosecond lasers have been analyzed in this work. It has been found that the elastic precursor survives even under the conditions when the pressure behind the plastic front reaches a giant value p ∼ 1 Mbar at which the melting of the metal begins. It has been shown that superelasticity should be taken into account to correctly interpret the preceding laser experiments.
17 schema:genre research_article
18 schema:inLanguage en
19 schema:isAccessibleForFree false
20 schema:isPartOf N595c4e56d06c4de481c279a5c8e974f2
21 Ndad041aef58b481e8bca2dcb3a4295f8
22 sg:journal.1052174
23 schema:name Superelasticity and the propagation of shock waves in crystals
24 schema:pagination 226-232
25 schema:productId N35799382fd894ce4afa5022283b158b4
26 Nacd91fa983de4b1ca0fbb6fb0699862e
27 Nd95bcc77c14f4dc99a380b3c98a2c6a4
28 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024299842
29 https://doi.org/10.1134/s0021364011040096
30 schema:sdDatePublished 2019-04-11T00:13
31 schema:sdLicense https://scigraph.springernature.com/explorer/license/
32 schema:sdPublisher Nf68ffc6c5b944d259fe095aaaec2b053
33 schema:url http://link.springer.com/10.1134/S0021364011040096
34 sgo:license sg:explorer/license/
35 sgo:sdDataset articles
36 rdf:type schema:ScholarlyArticle
37 N0f57b40c83ca41f09add0896740785dd rdf:first sg:person.015115430237.70
38 rdf:rest rdf:nil
39 N35799382fd894ce4afa5022283b158b4 schema:name readcube_id
40 schema:value 73c483a6d26aa35b745e75f1167790b853ea7b9725655f8c0466b5e9980ef10d
41 rdf:type schema:PropertyValue
42 N595c4e56d06c4de481c279a5c8e974f2 schema:volumeNumber 93
43 rdf:type schema:PublicationVolume
44 Na75cb1f2c9f047dd9f9e1dd9021a9d43 rdf:first sg:person.011630621137.82
45 rdf:rest N0f57b40c83ca41f09add0896740785dd
46 Nacd91fa983de4b1ca0fbb6fb0699862e schema:name dimensions_id
47 schema:value pub.1024299842
48 rdf:type schema:PropertyValue
49 Nd924b74ab5be4a2882ad340a118cc3a9 rdf:first sg:person.016077213477.15
50 rdf:rest Na75cb1f2c9f047dd9f9e1dd9021a9d43
51 Nd95bcc77c14f4dc99a380b3c98a2c6a4 schema:name doi
52 schema:value 10.1134/s0021364011040096
53 rdf:type schema:PropertyValue
54 Ndad041aef58b481e8bca2dcb3a4295f8 schema:issueNumber 4
55 rdf:type schema:PublicationIssue
56 Ndf2a537e248f4533b366611fb7f33906 rdf:first sg:person.013473613553.02
57 rdf:rest Nd924b74ab5be4a2882ad340a118cc3a9
58 Nf68ffc6c5b944d259fe095aaaec2b053 schema:name Springer Nature - SN SciGraph project
59 rdf:type schema:Organization
60 anzsrc-for:02 schema:inDefinedTermSet anzsrc-for:
61 schema:name Physical Sciences
62 rdf:type schema:DefinedTerm
63 anzsrc-for:0205 schema:inDefinedTermSet anzsrc-for:
64 schema:name Optical Physics
65 rdf:type schema:DefinedTerm
66 sg:journal.1052174 schema:issn 0021-3640
67 1090-6487
68 schema:name JETP Letters
69 rdf:type schema:Periodical
70 sg:person.011630621137.82 schema:affiliation https://www.grid.ac/institutes/grid.4886.2
71 schema:familyName Khokhlov
72 schema:givenName V. A.
73 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011630621137.82
74 rdf:type schema:Person
75 sg:person.013473613553.02 schema:affiliation https://www.grid.ac/institutes/grid.4886.2
76 schema:familyName Inogamov
77 schema:givenName N. A.
78 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013473613553.02
79 rdf:type schema:Person
80 sg:person.015115430237.70 schema:affiliation https://www.grid.ac/institutes/grid.4886.2
81 schema:familyName Shepelev
82 schema:givenName V. V.
83 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015115430237.70
84 rdf:type schema:Person
85 sg:person.016077213477.15 schema:affiliation https://www.grid.ac/institutes/grid.170693.a
86 schema:familyName Zhakhovskii
87 schema:givenName V. V.
88 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016077213477.15
89 rdf:type schema:Person
90 sg:pub.10.1007/s00339-008-4608-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1010890690
91 https://doi.org/10.1007/s00339-008-4608-x
92 rdf:type schema:CreativeWork
93 https://doi.org/10.1002/ctpp.201010111 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045011579
94 rdf:type schema:CreativeWork
95 https://doi.org/10.1063/1.1657194 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057735101
96 rdf:type schema:CreativeWork
97 https://doi.org/10.1088/0022-3727/42/4/045502 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030278826
98 rdf:type schema:CreativeWork
99 https://doi.org/10.1103/physrevb.82.064113 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060633362
100 rdf:type schema:CreativeWork
101 https://doi.org/10.1103/physrevlett.75.252 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060811848
102 rdf:type schema:CreativeWork
103 https://doi.org/10.1103/physrevlett.77.3359 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060814081
104 rdf:type schema:CreativeWork
105 https://doi.org/10.1103/physrevlett.85.3205 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060821989
106 rdf:type schema:CreativeWork
107 https://doi.org/10.1364/josab.23.001954 schema:sameAs https://app.dimensions.ai/details/publication/pub.1065171750
108 rdf:type schema:CreativeWork
109 https://doi.org/10.3367/ufnr.0177.200708a.0809 schema:sameAs https://app.dimensions.ai/details/publication/pub.1071220590
110 rdf:type schema:CreativeWork
111 https://www.grid.ac/institutes/grid.170693.a schema:alternateName University of South Florida
112 schema:name Department of Physics, University of South Florida, 33620, Tampa, Florida, USA
113 Joint Institute for High Temperatures, Russian Academy of Sciences, ul. Izhorskaya 13/19, 125412, Moscow, Russia
114 rdf:type schema:Organization
115 https://www.grid.ac/institutes/grid.4886.2 schema:alternateName Russian Academy of Sciences
116 schema:name Institute for Computer Aided Design, Russian Academy of Sciences, Vtoraya Brestskaya ul. 19/18, 123056, Moscow, Russia
117 Landau Institute for Theoretical Physics, Russian Academy of Sciences, 142432, Chernogolovka, Moscow region, Russia
118 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...