Elastic-plastic phenomena in ultrashort shock waves View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2010-10

AUTHORS

V. V. Zhakhovskii, N. A. Inogamov

ABSTRACT

A physical model of shock-wave phenomena in metals irradiated by a femtosecond laser pulse has been developed. The use of the experimental results (reported in S.I. Ashitkov et al., Pis’ma Zh. Eksp. Teor. Fiz. 92, 568 (2010) [JETP Lett. 92, 516 (2010)] together with the molecular dynamics simulation makes it possible to study the elastic properties of aluminum crystals at extreme shear stresses comparable in amplitude with the shear modulus. As a result, the elastic Hugoniot adiabat has been continued to the region of metastable elastic states at very high pressures, which are one or two orders of magnitude higher than the commonly accepted values for the dynamic elastic limit. It has been shown that the ultrashort elastic shock wave of superhigh pressure precedes the formation of the known split-shock wave structure consisting of an elastic precursor and a plastic shock wave. More... »

PAGES

521-526

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1134/s0021364010200063

DOI

http://dx.doi.org/10.1134/s0021364010200063

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1008979308


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0307", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Theoretical and Computational Chemistry", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/03", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Chemical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "University of South Florida", 
          "id": "https://www.grid.ac/institutes/grid.170693.a", 
          "name": [
            "Joint Institute for High Temperatures, Russian Academy of Sciences, ul. Izhorskaya 13/19, 125412, Moscow, Russia", 
            "Department of Physics, University of South Florida, 33620, Tampa, Florida, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zhakhovskii", 
        "givenName": "V. V.", 
        "id": "sg:person.016077213477.15", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016077213477.15"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Russian Academy of Sciences", 
          "id": "https://www.grid.ac/institutes/grid.4886.2", 
          "name": [
            "Landau Institute for Theoretical Physics, Russian Academy of Sciences, 142432, Chernogolovka, Moscow region, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Inogamov", 
        "givenName": "N. A.", 
        "id": "sg:person.013473613553.02", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013473613553.02"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/j.apsusc.2009.04.082", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003513558"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.tsf.2003.11.116", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020019448"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1041818458", 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4757-4282-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041818458", 
          "https://doi.org/10.1007/978-1-4757-4282-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4757-4282-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041818458", 
          "https://doi.org/10.1007/978-1-4757-4282-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.apsusc.2009.04.139", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053570778"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.1337629", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057696393"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.82.064113", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060633362"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.82.064113", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060633362"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1364/josab.23.001954", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1065171750"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3367/ufnr.0177.200708a.0809", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1071220590"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2010-10", 
    "datePublishedReg": "2010-10-01", 
    "description": "A physical model of shock-wave phenomena in metals irradiated by a femtosecond laser pulse has been developed. The use of the experimental results (reported in S.I. Ashitkov et al., Pis\u2019ma Zh. Eksp. Teor. Fiz. 92, 568 (2010) [JETP Lett. 92, 516 (2010)] together with the molecular dynamics simulation makes it possible to study the elastic properties of aluminum crystals at extreme shear stresses comparable in amplitude with the shear modulus. As a result, the elastic Hugoniot adiabat has been continued to the region of metastable elastic states at very high pressures, which are one or two orders of magnitude higher than the commonly accepted values for the dynamic elastic limit. It has been shown that the ultrashort elastic shock wave of superhigh pressure precedes the formation of the known split-shock wave structure consisting of an elastic precursor and a plastic shock wave.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1134/s0021364010200063", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1052174", 
        "issn": [
          "0021-3640", 
          "1090-6487"
        ], 
        "name": "JETP Letters", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "8", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "92"
      }
    ], 
    "name": "Elastic-plastic phenomena in ultrashort shock waves", 
    "pagination": "521-526", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "2ac707f8f186c5567045e0341626397ed88f34eefbe83539bb1e3657332b95ee"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1134/s0021364010200063"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1008979308"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1134/s0021364010200063", 
      "https://app.dimensions.ai/details/publication/pub.1008979308"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T16:39", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8669_00000498.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1134/S0021364010200063"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1134/s0021364010200063'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1134/s0021364010200063'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1134/s0021364010200063'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1134/s0021364010200063'


 

This table displays all metadata directly associated to this object as RDF triples.

99 TRIPLES      21 PREDICATES      36 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1134/s0021364010200063 schema:about anzsrc-for:03
2 anzsrc-for:0307
3 schema:author N06cc1d1259c4491682bfe3e354cdf1e4
4 schema:citation sg:pub.10.1007/978-1-4757-4282-4
5 https://app.dimensions.ai/details/publication/pub.1041818458
6 https://doi.org/10.1016/j.apsusc.2009.04.082
7 https://doi.org/10.1016/j.apsusc.2009.04.139
8 https://doi.org/10.1016/j.tsf.2003.11.116
9 https://doi.org/10.1063/1.1337629
10 https://doi.org/10.1103/physrevb.82.064113
11 https://doi.org/10.1364/josab.23.001954
12 https://doi.org/10.3367/ufnr.0177.200708a.0809
13 schema:datePublished 2010-10
14 schema:datePublishedReg 2010-10-01
15 schema:description A physical model of shock-wave phenomena in metals irradiated by a femtosecond laser pulse has been developed. The use of the experimental results (reported in S.I. Ashitkov et al., Pis’ma Zh. Eksp. Teor. Fiz. 92, 568 (2010) [JETP Lett. 92, 516 (2010)] together with the molecular dynamics simulation makes it possible to study the elastic properties of aluminum crystals at extreme shear stresses comparable in amplitude with the shear modulus. As a result, the elastic Hugoniot adiabat has been continued to the region of metastable elastic states at very high pressures, which are one or two orders of magnitude higher than the commonly accepted values for the dynamic elastic limit. It has been shown that the ultrashort elastic shock wave of superhigh pressure precedes the formation of the known split-shock wave structure consisting of an elastic precursor and a plastic shock wave.
16 schema:genre research_article
17 schema:inLanguage en
18 schema:isAccessibleForFree false
19 schema:isPartOf N67b4b6def66d4550bb64166f9ddbea05
20 Nfc94abf609b242349c1f5ffbff7c6b16
21 sg:journal.1052174
22 schema:name Elastic-plastic phenomena in ultrashort shock waves
23 schema:pagination 521-526
24 schema:productId N3da92d3b1e7b41538f8b35dccc193361
25 N6d9a61b2310642ad8c739363d813d323
26 Nb7c9105eb24c4974ac31d763de75f835
27 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008979308
28 https://doi.org/10.1134/s0021364010200063
29 schema:sdDatePublished 2019-04-10T16:39
30 schema:sdLicense https://scigraph.springernature.com/explorer/license/
31 schema:sdPublisher N23914a1d31fd43888df7e96ee9529b64
32 schema:url http://link.springer.com/10.1134/S0021364010200063
33 sgo:license sg:explorer/license/
34 sgo:sdDataset articles
35 rdf:type schema:ScholarlyArticle
36 N06cc1d1259c4491682bfe3e354cdf1e4 rdf:first sg:person.016077213477.15
37 rdf:rest Nadfa9a5cd7c44abea4db4440f6882a68
38 N23914a1d31fd43888df7e96ee9529b64 schema:name Springer Nature - SN SciGraph project
39 rdf:type schema:Organization
40 N3da92d3b1e7b41538f8b35dccc193361 schema:name doi
41 schema:value 10.1134/s0021364010200063
42 rdf:type schema:PropertyValue
43 N67b4b6def66d4550bb64166f9ddbea05 schema:volumeNumber 92
44 rdf:type schema:PublicationVolume
45 N6d9a61b2310642ad8c739363d813d323 schema:name dimensions_id
46 schema:value pub.1008979308
47 rdf:type schema:PropertyValue
48 Nadfa9a5cd7c44abea4db4440f6882a68 rdf:first sg:person.013473613553.02
49 rdf:rest rdf:nil
50 Nb7c9105eb24c4974ac31d763de75f835 schema:name readcube_id
51 schema:value 2ac707f8f186c5567045e0341626397ed88f34eefbe83539bb1e3657332b95ee
52 rdf:type schema:PropertyValue
53 Nfc94abf609b242349c1f5ffbff7c6b16 schema:issueNumber 8
54 rdf:type schema:PublicationIssue
55 anzsrc-for:03 schema:inDefinedTermSet anzsrc-for:
56 schema:name Chemical Sciences
57 rdf:type schema:DefinedTerm
58 anzsrc-for:0307 schema:inDefinedTermSet anzsrc-for:
59 schema:name Theoretical and Computational Chemistry
60 rdf:type schema:DefinedTerm
61 sg:journal.1052174 schema:issn 0021-3640
62 1090-6487
63 schema:name JETP Letters
64 rdf:type schema:Periodical
65 sg:person.013473613553.02 schema:affiliation https://www.grid.ac/institutes/grid.4886.2
66 schema:familyName Inogamov
67 schema:givenName N. A.
68 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013473613553.02
69 rdf:type schema:Person
70 sg:person.016077213477.15 schema:affiliation https://www.grid.ac/institutes/grid.170693.a
71 schema:familyName Zhakhovskii
72 schema:givenName V. V.
73 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016077213477.15
74 rdf:type schema:Person
75 sg:pub.10.1007/978-1-4757-4282-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041818458
76 https://doi.org/10.1007/978-1-4757-4282-4
77 rdf:type schema:CreativeWork
78 https://app.dimensions.ai/details/publication/pub.1041818458 schema:CreativeWork
79 https://doi.org/10.1016/j.apsusc.2009.04.082 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003513558
80 rdf:type schema:CreativeWork
81 https://doi.org/10.1016/j.apsusc.2009.04.139 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053570778
82 rdf:type schema:CreativeWork
83 https://doi.org/10.1016/j.tsf.2003.11.116 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020019448
84 rdf:type schema:CreativeWork
85 https://doi.org/10.1063/1.1337629 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057696393
86 rdf:type schema:CreativeWork
87 https://doi.org/10.1103/physrevb.82.064113 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060633362
88 rdf:type schema:CreativeWork
89 https://doi.org/10.1364/josab.23.001954 schema:sameAs https://app.dimensions.ai/details/publication/pub.1065171750
90 rdf:type schema:CreativeWork
91 https://doi.org/10.3367/ufnr.0177.200708a.0809 schema:sameAs https://app.dimensions.ai/details/publication/pub.1071220590
92 rdf:type schema:CreativeWork
93 https://www.grid.ac/institutes/grid.170693.a schema:alternateName University of South Florida
94 schema:name Department of Physics, University of South Florida, 33620, Tampa, Florida, USA
95 Joint Institute for High Temperatures, Russian Academy of Sciences, ul. Izhorskaya 13/19, 125412, Moscow, Russia
96 rdf:type schema:Organization
97 https://www.grid.ac/institutes/grid.4886.2 schema:alternateName Russian Academy of Sciences
98 schema:name Landau Institute for Theoretical Physics, Russian Academy of Sciences, 142432, Chernogolovka, Moscow region, Russia
99 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...