Formation of a detonation wave in the thermal decomposition of acetylene View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2010-07

AUTHORS

A. V. Emelianov, A. V. Eremin, V. E. Fortov

ABSTRACT

The formation of a condensation detonation wave has been experimentally observed in the shock-induced thermal decomposition of acetylene. The stable detonation wave in the 20% C2H2 + 80% Ar mixture has been obtained at an initial pressure behind the shock wave of no less than 30 atm. The main kinetic characteristics of the pyrolysis of acetylene—the period of the induction of condensation and the growth rate constant of condensed particles—have been determined. The correlation of various stages of the process with the heat release in the condensation has been analyzed. It has been shown that the period of the particle growth induction is not accompanied by noticeable heat release. The subsequent condensation stages characterized by significant heat release occur very rapidly (faster than 10−5 s) in the so-called explosive condensation. The analysis of the results indicates that the reactions leading to the growth of large polyhydrocarbon molecules, which precede the formation of condensed carbon particles, constitute the limiting stage of the process, which determines the possibility of the formation of the condensation detonation wave in acetylene. An increase in the pressure is accompanied by the sharp narrowing of the induction region and the transition of the process to the condensation detonation wave. More... »

PAGES

97-101

Journal

TITLE

JETP Letters

ISSUE

2

VOLUME

92

Author Affiliations

Identifiers

URI

http://scigraph.springernature.com/pub.10.1134/s0021364010140055

DOI

http://dx.doi.org/10.1134/s0021364010140055

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1003563204


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0915", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Interdisciplinary Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Engineering", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Russian Academy of Sciences", 
          "id": "https://www.grid.ac/institutes/grid.4886.2", 
          "name": [
            "Joint Institute for High Temperatures, Russian Academy of Sciences, ul. Izhorskaya 13/19, 125412, Moscow, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Emelianov", 
        "givenName": "A. V.", 
        "id": "sg:person.016665202253.27", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016665202253.27"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Russian Academy of Sciences", 
          "id": "https://www.grid.ac/institutes/grid.4886.2", 
          "name": [
            "Joint Institute for High Temperatures, Russian Academy of Sciences, ul. Izhorskaya 13/19, 125412, Moscow, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Eremin", 
        "givenName": "A. V.", 
        "id": "sg:person.014424512265.37", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014424512265.37"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Russian Academy of Sciences", 
          "id": "https://www.grid.ac/institutes/grid.4886.2", 
          "name": [
            "Joint Institute for High Temperatures, Russian Academy of Sciences, ul. Izhorskaya 13/19, 125412, Moscow, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Fortov", 
        "givenName": "V. E.", 
        "id": "sg:person.013103453750.81", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013103453750.81"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/0010-2180(83)90024-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000668512"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0010-2180(83)90024-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000668512"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0010-2180(78)90092-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006343452"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0010-2180(78)90092-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006343452"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0082-0784(79)80129-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019547140"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0082-0784(81)80120-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020650610"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1524/zpch.1998.203.part_1_2.001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021204664"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0082-0784(96)80058-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026232266"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0082-0784(79)80057-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045610451"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1039/df9562200157", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051048559"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1524/zpch.1999.212.part_2.219", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052158385"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.79.035303", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060738699"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.79.035303", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060738699"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2010-07", 
    "datePublishedReg": "2010-07-01", 
    "description": "The formation of a condensation detonation wave has been experimentally observed in the shock-induced thermal decomposition of acetylene. The stable detonation wave in the 20% C2H2 + 80% Ar mixture has been obtained at an initial pressure behind the shock wave of no less than 30 atm. The main kinetic characteristics of the pyrolysis of acetylene\u2014the period of the induction of condensation and the growth rate constant of condensed particles\u2014have been determined. The correlation of various stages of the process with the heat release in the condensation has been analyzed. It has been shown that the period of the particle growth induction is not accompanied by noticeable heat release. The subsequent condensation stages characterized by significant heat release occur very rapidly (faster than 10\u22125 s) in the so-called explosive condensation. The analysis of the results indicates that the reactions leading to the growth of large polyhydrocarbon molecules, which precede the formation of condensed carbon particles, constitute the limiting stage of the process, which determines the possibility of the formation of the condensation detonation wave in acetylene. An increase in the pressure is accompanied by the sharp narrowing of the induction region and the transition of the process to the condensation detonation wave.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1134/s0021364010140055", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1052174", 
        "issn": [
          "0021-3640", 
          "1090-6487"
        ], 
        "name": "JETP Letters", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "2", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "92"
      }
    ], 
    "name": "Formation of a detonation wave in the thermal decomposition of acetylene", 
    "pagination": "97-101", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "10f9894ad034c858f259087ce83cc1facd180846e1ca461f192c2a09f9595e9e"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1134/s0021364010140055"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1003563204"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1134/s0021364010140055", 
      "https://app.dimensions.ai/details/publication/pub.1003563204"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T10:55", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000351_0000000351/records_43262_00000000.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1134/S0021364010140055"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1134/s0021364010140055'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1134/s0021364010140055'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1134/s0021364010140055'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1134/s0021364010140055'


 

This table displays all metadata directly associated to this object as RDF triples.

105 TRIPLES      21 PREDICATES      37 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1134/s0021364010140055 schema:about anzsrc-for:09
2 anzsrc-for:0915
3 schema:author N1b6483b17ad2475f803a9d7ea982a969
4 schema:citation https://doi.org/10.1016/0010-2180(78)90092-5
5 https://doi.org/10.1016/0010-2180(83)90024-x
6 https://doi.org/10.1016/s0082-0784(79)80057-0
7 https://doi.org/10.1016/s0082-0784(79)80129-0
8 https://doi.org/10.1016/s0082-0784(81)80120-8
9 https://doi.org/10.1016/s0082-0784(96)80058-0
10 https://doi.org/10.1039/df9562200157
11 https://doi.org/10.1103/physreve.79.035303
12 https://doi.org/10.1524/zpch.1998.203.part_1_2.001
13 https://doi.org/10.1524/zpch.1999.212.part_2.219
14 schema:datePublished 2010-07
15 schema:datePublishedReg 2010-07-01
16 schema:description The formation of a condensation detonation wave has been experimentally observed in the shock-induced thermal decomposition of acetylene. The stable detonation wave in the 20% C2H2 + 80% Ar mixture has been obtained at an initial pressure behind the shock wave of no less than 30 atm. The main kinetic characteristics of the pyrolysis of acetylene—the period of the induction of condensation and the growth rate constant of condensed particles—have been determined. The correlation of various stages of the process with the heat release in the condensation has been analyzed. It has been shown that the period of the particle growth induction is not accompanied by noticeable heat release. The subsequent condensation stages characterized by significant heat release occur very rapidly (faster than 10−5 s) in the so-called explosive condensation. The analysis of the results indicates that the reactions leading to the growth of large polyhydrocarbon molecules, which precede the formation of condensed carbon particles, constitute the limiting stage of the process, which determines the possibility of the formation of the condensation detonation wave in acetylene. An increase in the pressure is accompanied by the sharp narrowing of the induction region and the transition of the process to the condensation detonation wave.
17 schema:genre research_article
18 schema:inLanguage en
19 schema:isAccessibleForFree false
20 schema:isPartOf Nc30a71385e6546db877503ba445d6224
21 Ncf2901cf69e748ee8b5575f35f56ddfa
22 sg:journal.1052174
23 schema:name Formation of a detonation wave in the thermal decomposition of acetylene
24 schema:pagination 97-101
25 schema:productId N083e0069d84f49a09ad907c38f36c97b
26 N6efa53036bb64ba38c5a4d20d66f1f18
27 Nf8ad2ee602d646b29245ccccf2c50e70
28 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003563204
29 https://doi.org/10.1134/s0021364010140055
30 schema:sdDatePublished 2019-04-11T10:55
31 schema:sdLicense https://scigraph.springernature.com/explorer/license/
32 schema:sdPublisher N1ec1dc5af14248be995d8c8a9734b1b9
33 schema:url http://link.springer.com/10.1134/S0021364010140055
34 sgo:license sg:explorer/license/
35 sgo:sdDataset articles
36 rdf:type schema:ScholarlyArticle
37 N083e0069d84f49a09ad907c38f36c97b schema:name dimensions_id
38 schema:value pub.1003563204
39 rdf:type schema:PropertyValue
40 N0a0c88e4bd3b45ceb225566ec6c9a639 rdf:first sg:person.013103453750.81
41 rdf:rest rdf:nil
42 N1b6483b17ad2475f803a9d7ea982a969 rdf:first sg:person.016665202253.27
43 rdf:rest N42bc7be205bd4de5bb375848e6784f2c
44 N1ec1dc5af14248be995d8c8a9734b1b9 schema:name Springer Nature - SN SciGraph project
45 rdf:type schema:Organization
46 N42bc7be205bd4de5bb375848e6784f2c rdf:first sg:person.014424512265.37
47 rdf:rest N0a0c88e4bd3b45ceb225566ec6c9a639
48 N6efa53036bb64ba38c5a4d20d66f1f18 schema:name readcube_id
49 schema:value 10f9894ad034c858f259087ce83cc1facd180846e1ca461f192c2a09f9595e9e
50 rdf:type schema:PropertyValue
51 Nc30a71385e6546db877503ba445d6224 schema:issueNumber 2
52 rdf:type schema:PublicationIssue
53 Ncf2901cf69e748ee8b5575f35f56ddfa schema:volumeNumber 92
54 rdf:type schema:PublicationVolume
55 Nf8ad2ee602d646b29245ccccf2c50e70 schema:name doi
56 schema:value 10.1134/s0021364010140055
57 rdf:type schema:PropertyValue
58 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
59 schema:name Engineering
60 rdf:type schema:DefinedTerm
61 anzsrc-for:0915 schema:inDefinedTermSet anzsrc-for:
62 schema:name Interdisciplinary Engineering
63 rdf:type schema:DefinedTerm
64 sg:journal.1052174 schema:issn 0021-3640
65 1090-6487
66 schema:name JETP Letters
67 rdf:type schema:Periodical
68 sg:person.013103453750.81 schema:affiliation https://www.grid.ac/institutes/grid.4886.2
69 schema:familyName Fortov
70 schema:givenName V. E.
71 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013103453750.81
72 rdf:type schema:Person
73 sg:person.014424512265.37 schema:affiliation https://www.grid.ac/institutes/grid.4886.2
74 schema:familyName Eremin
75 schema:givenName A. V.
76 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014424512265.37
77 rdf:type schema:Person
78 sg:person.016665202253.27 schema:affiliation https://www.grid.ac/institutes/grid.4886.2
79 schema:familyName Emelianov
80 schema:givenName A. V.
81 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016665202253.27
82 rdf:type schema:Person
83 https://doi.org/10.1016/0010-2180(78)90092-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006343452
84 rdf:type schema:CreativeWork
85 https://doi.org/10.1016/0010-2180(83)90024-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1000668512
86 rdf:type schema:CreativeWork
87 https://doi.org/10.1016/s0082-0784(79)80057-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045610451
88 rdf:type schema:CreativeWork
89 https://doi.org/10.1016/s0082-0784(79)80129-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019547140
90 rdf:type schema:CreativeWork
91 https://doi.org/10.1016/s0082-0784(81)80120-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020650610
92 rdf:type schema:CreativeWork
93 https://doi.org/10.1016/s0082-0784(96)80058-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026232266
94 rdf:type schema:CreativeWork
95 https://doi.org/10.1039/df9562200157 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051048559
96 rdf:type schema:CreativeWork
97 https://doi.org/10.1103/physreve.79.035303 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060738699
98 rdf:type schema:CreativeWork
99 https://doi.org/10.1524/zpch.1998.203.part_1_2.001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021204664
100 rdf:type schema:CreativeWork
101 https://doi.org/10.1524/zpch.1999.212.part_2.219 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052158385
102 rdf:type schema:CreativeWork
103 https://www.grid.ac/institutes/grid.4886.2 schema:alternateName Russian Academy of Sciences
104 schema:name Joint Institute for High Temperatures, Russian Academy of Sciences, ul. Izhorskaya 13/19, 125412, Moscow, Russia
105 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...