Chiral magnetic effect in SU(2) lattice gluodynamics at zero temperature View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2009-11

AUTHORS

P. V. Buividovich, E. V. Lushchevskaya, M. I. Polikarpov, M. N. Chernodub

ABSTRACT

The chiral magnetic effect is the appearance of a quark electric current along a magnetic-field direction in topologically nontrivial gauge fields. There is evidence that this effect is observed in collisions between heavy ions at the RHIC collider. The features of the chiral magnetic effect in SU(2) lattice gluodynamics at zero temperature have been investigated. It has been found that the electric current increases in the magnetic-field direction owing to quantum fluctuations of gluon fields. Fluctuations of the local charge density and chirality also increase with the magnetic field strength, which is a signature of the chiral magnetic effect. More... »

PAGES

412

Identifiers

URI

http://scigraph.springernature.com/pub.10.1134/s0021364009180027

DOI

http://dx.doi.org/10.1134/s0021364009180027

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1048907004


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0202", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Atomic, Molecular, Nuclear, Particle and Plasma Physics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/02", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "National Academy of Sciences of Belarus", 
          "id": "https://www.grid.ac/institutes/grid.410300.6", 
          "name": [
            "Institute for Theoretical and Experimental Physics, 117218, Moscow, Russia", 
            "Joint Institute for Power and Nuclear Research, Belarussian Academy of Sciences, 220109, Minsk, Belarus"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Buividovich", 
        "givenName": "P. V.", 
        "id": "sg:person.01160762673.00", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01160762673.00"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Institute for Theoretical and Experimental Physics", 
          "id": "https://www.grid.ac/institutes/grid.21626.31", 
          "name": [
            "Institute for Theoretical and Experimental Physics, 117218, Moscow, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Lushchevskaya", 
        "givenName": "E. V.", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Institute for Theoretical and Experimental Physics", 
          "id": "https://www.grid.ac/institutes/grid.21626.31", 
          "name": [
            "Institute for Theoretical and Experimental Physics, 117218, Moscow, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Polikarpov", 
        "givenName": "M. I.", 
        "id": "sg:person.014215752171.59", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014215752171.59"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Institute for Theoretical and Experimental Physics", 
          "id": "https://www.grid.ac/institutes/grid.21626.31", 
          "name": [
            "Laboratory of Mathematics and Theoretical Physics, University of Tours, 37200, Tours, France", 
            "Department of Mathematical Physics and Astronomy, Gent University, B-9000, Gent, Belgium", 
            "Institute for Theoretical and Experimental Physics, 117218, Moscow, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Chernodub", 
        "givenName": "M. N.", 
        "id": "sg:person.010306364071.34", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010306364071.34"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/j.nuclphysa.2008.10.010", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000141032"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevd.78.074033", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001879914"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevd.78.074033", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001879914"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0370-2693(83)91529-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009993034"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0370-2693(83)91529-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009993034"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.nuclphysa.2008.02.298", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016152607"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.physletb.2005.08.106", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024757889"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0370-2693(97)01368-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027235951"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevd.79.054505", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031077717"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevd.79.054505", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031077717"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevd.72.045011", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034639668"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevd.72.045011", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034639668"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevd.72.045011", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034639668"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0370-2693(77)90675-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035067878"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0370-2693(77)90675-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035067878"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.81.512", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041277024"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.81.512", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041277024"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.physletb.2005.11.075", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050604798"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.physletb.2008.04.050", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052506148"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0550-3213(88)90333-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053450281"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0550-3213(88)90333-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053450281"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevd.14.3432", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060684457"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevd.14.3432", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060684457"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3367/ufnr.0136.198204a.0553", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1071217152"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2009-11", 
    "datePublishedReg": "2009-11-01", 
    "description": "The chiral magnetic effect is the appearance of a quark electric current along a magnetic-field direction in topologically nontrivial gauge fields. There is evidence that this effect is observed in collisions between heavy ions at the RHIC collider. The features of the chiral magnetic effect in SU(2) lattice gluodynamics at zero temperature have been investigated. It has been found that the electric current increases in the magnetic-field direction owing to quantum fluctuations of gluon fields. Fluctuations of the local charge density and chirality also increase with the magnetic field strength, which is a signature of the chiral magnetic effect.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1134/s0021364009180027", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1052174", 
        "issn": [
          "0021-3640", 
          "1090-6487"
        ], 
        "name": "JETP Letters", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "6", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "90"
      }
    ], 
    "name": "Chiral magnetic effect in SU(2) lattice gluodynamics at zero temperature", 
    "pagination": "412", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "e8fbcc671a8c1df956fee97fa08253702230642045ef2cce3f200e1213a45323"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1134/s0021364009180027"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1048907004"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1134/s0021364009180027", 
      "https://app.dimensions.ai/details/publication/pub.1048907004"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T09:39", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000346_0000000346/records_99836_00000003.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1134/S0021364009180027"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1134/s0021364009180027'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1134/s0021364009180027'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1134/s0021364009180027'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1134/s0021364009180027'


 

This table displays all metadata directly associated to this object as RDF triples.

132 TRIPLES      21 PREDICATES      42 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1134/s0021364009180027 schema:about anzsrc-for:02
2 anzsrc-for:0202
3 schema:author N65284cd6b0ef4456b5f7ae9a1a624b54
4 schema:citation https://doi.org/10.1016/0370-2693(77)90675-x
5 https://doi.org/10.1016/0370-2693(83)91529-0
6 https://doi.org/10.1016/0550-3213(88)90333-1
7 https://doi.org/10.1016/j.nuclphysa.2008.02.298
8 https://doi.org/10.1016/j.nuclphysa.2008.10.010
9 https://doi.org/10.1016/j.physletb.2005.08.106
10 https://doi.org/10.1016/j.physletb.2005.11.075
11 https://doi.org/10.1016/j.physletb.2008.04.050
12 https://doi.org/10.1016/s0370-2693(97)01368-3
13 https://doi.org/10.1103/physrevd.14.3432
14 https://doi.org/10.1103/physrevd.72.045011
15 https://doi.org/10.1103/physrevd.78.074033
16 https://doi.org/10.1103/physrevd.79.054505
17 https://doi.org/10.1103/physrevlett.81.512
18 https://doi.org/10.3367/ufnr.0136.198204a.0553
19 schema:datePublished 2009-11
20 schema:datePublishedReg 2009-11-01
21 schema:description The chiral magnetic effect is the appearance of a quark electric current along a magnetic-field direction in topologically nontrivial gauge fields. There is evidence that this effect is observed in collisions between heavy ions at the RHIC collider. The features of the chiral magnetic effect in SU(2) lattice gluodynamics at zero temperature have been investigated. It has been found that the electric current increases in the magnetic-field direction owing to quantum fluctuations of gluon fields. Fluctuations of the local charge density and chirality also increase with the magnetic field strength, which is a signature of the chiral magnetic effect.
22 schema:genre research_article
23 schema:inLanguage en
24 schema:isAccessibleForFree false
25 schema:isPartOf Nabb96bd064774d6fb4a2758477ac6bcb
26 Nee30be180e76425baabd1371d4e807f6
27 sg:journal.1052174
28 schema:name Chiral magnetic effect in SU(2) lattice gluodynamics at zero temperature
29 schema:pagination 412
30 schema:productId Nd8865498f2bd48f886e709109be89f3a
31 Nfe654a7aa5f445d593a62eacd23d91a9
32 Nff93334328354bb3a58e7a42a9e27e3e
33 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048907004
34 https://doi.org/10.1134/s0021364009180027
35 schema:sdDatePublished 2019-04-11T09:39
36 schema:sdLicense https://scigraph.springernature.com/explorer/license/
37 schema:sdPublisher Ncf60e698141648a88ca5f017cff21e54
38 schema:url http://link.springer.com/10.1134/S0021364009180027
39 sgo:license sg:explorer/license/
40 sgo:sdDataset articles
41 rdf:type schema:ScholarlyArticle
42 N20bf3b103d39401ab2cba7e614c5cd7b schema:affiliation https://www.grid.ac/institutes/grid.21626.31
43 schema:familyName Lushchevskaya
44 schema:givenName E. V.
45 rdf:type schema:Person
46 N4a457d80e4d548659e9c0b388d69c841 rdf:first N20bf3b103d39401ab2cba7e614c5cd7b
47 rdf:rest Ndfd2d3a1d092484db0f542042cb1fded
48 N65284cd6b0ef4456b5f7ae9a1a624b54 rdf:first sg:person.01160762673.00
49 rdf:rest N4a457d80e4d548659e9c0b388d69c841
50 Nabb96bd064774d6fb4a2758477ac6bcb schema:issueNumber 6
51 rdf:type schema:PublicationIssue
52 Ncf60e698141648a88ca5f017cff21e54 schema:name Springer Nature - SN SciGraph project
53 rdf:type schema:Organization
54 Nd8865498f2bd48f886e709109be89f3a schema:name readcube_id
55 schema:value e8fbcc671a8c1df956fee97fa08253702230642045ef2cce3f200e1213a45323
56 rdf:type schema:PropertyValue
57 Ndfd2d3a1d092484db0f542042cb1fded rdf:first sg:person.014215752171.59
58 rdf:rest Nebb721f0c7f54de9a853b01879c49135
59 Nebb721f0c7f54de9a853b01879c49135 rdf:first sg:person.010306364071.34
60 rdf:rest rdf:nil
61 Nee30be180e76425baabd1371d4e807f6 schema:volumeNumber 90
62 rdf:type schema:PublicationVolume
63 Nfe654a7aa5f445d593a62eacd23d91a9 schema:name doi
64 schema:value 10.1134/s0021364009180027
65 rdf:type schema:PropertyValue
66 Nff93334328354bb3a58e7a42a9e27e3e schema:name dimensions_id
67 schema:value pub.1048907004
68 rdf:type schema:PropertyValue
69 anzsrc-for:02 schema:inDefinedTermSet anzsrc-for:
70 schema:name Physical Sciences
71 rdf:type schema:DefinedTerm
72 anzsrc-for:0202 schema:inDefinedTermSet anzsrc-for:
73 schema:name Atomic, Molecular, Nuclear, Particle and Plasma Physics
74 rdf:type schema:DefinedTerm
75 sg:journal.1052174 schema:issn 0021-3640
76 1090-6487
77 schema:name JETP Letters
78 rdf:type schema:Periodical
79 sg:person.010306364071.34 schema:affiliation https://www.grid.ac/institutes/grid.21626.31
80 schema:familyName Chernodub
81 schema:givenName M. N.
82 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010306364071.34
83 rdf:type schema:Person
84 sg:person.01160762673.00 schema:affiliation https://www.grid.ac/institutes/grid.410300.6
85 schema:familyName Buividovich
86 schema:givenName P. V.
87 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01160762673.00
88 rdf:type schema:Person
89 sg:person.014215752171.59 schema:affiliation https://www.grid.ac/institutes/grid.21626.31
90 schema:familyName Polikarpov
91 schema:givenName M. I.
92 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014215752171.59
93 rdf:type schema:Person
94 https://doi.org/10.1016/0370-2693(77)90675-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1035067878
95 rdf:type schema:CreativeWork
96 https://doi.org/10.1016/0370-2693(83)91529-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009993034
97 rdf:type schema:CreativeWork
98 https://doi.org/10.1016/0550-3213(88)90333-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053450281
99 rdf:type schema:CreativeWork
100 https://doi.org/10.1016/j.nuclphysa.2008.02.298 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016152607
101 rdf:type schema:CreativeWork
102 https://doi.org/10.1016/j.nuclphysa.2008.10.010 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000141032
103 rdf:type schema:CreativeWork
104 https://doi.org/10.1016/j.physletb.2005.08.106 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024757889
105 rdf:type schema:CreativeWork
106 https://doi.org/10.1016/j.physletb.2005.11.075 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050604798
107 rdf:type schema:CreativeWork
108 https://doi.org/10.1016/j.physletb.2008.04.050 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052506148
109 rdf:type schema:CreativeWork
110 https://doi.org/10.1016/s0370-2693(97)01368-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027235951
111 rdf:type schema:CreativeWork
112 https://doi.org/10.1103/physrevd.14.3432 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060684457
113 rdf:type schema:CreativeWork
114 https://doi.org/10.1103/physrevd.72.045011 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034639668
115 rdf:type schema:CreativeWork
116 https://doi.org/10.1103/physrevd.78.074033 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001879914
117 rdf:type schema:CreativeWork
118 https://doi.org/10.1103/physrevd.79.054505 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031077717
119 rdf:type schema:CreativeWork
120 https://doi.org/10.1103/physrevlett.81.512 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041277024
121 rdf:type schema:CreativeWork
122 https://doi.org/10.3367/ufnr.0136.198204a.0553 schema:sameAs https://app.dimensions.ai/details/publication/pub.1071217152
123 rdf:type schema:CreativeWork
124 https://www.grid.ac/institutes/grid.21626.31 schema:alternateName Institute for Theoretical and Experimental Physics
125 schema:name Department of Mathematical Physics and Astronomy, Gent University, B-9000, Gent, Belgium
126 Institute for Theoretical and Experimental Physics, 117218, Moscow, Russia
127 Laboratory of Mathematics and Theoretical Physics, University of Tours, 37200, Tours, France
128 rdf:type schema:Organization
129 https://www.grid.ac/institutes/grid.410300.6 schema:alternateName National Academy of Sciences of Belarus
130 schema:name Institute for Theoretical and Experimental Physics, 117218, Moscow, Russia
131 Joint Institute for Power and Nuclear Research, Belarussian Academy of Sciences, 220109, Minsk, Belarus
132 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...