Passive scalar structures in peripheral regions of random flows View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2008-08

AUTHORS

A. Chernykh, V. Lebedev

ABSTRACT

The statistical properties of the passive scalar near walls in random flows assuming a weakness of its diffusion have been investigated. Then, at advanced stages of the passive scalar mixing, its unmixed residue is concentrated in a narrow diffusive layer near the wall. The numerical simulations have revealed the structures responsible for the passive scalar transport to the bulk; these are passive scalar tongues pulled from the diffusive boundary layer. The passive scalar integrated along the wall possesses a well-pronounced scaling behavior. An analytical scheme, giving exponents of the integral passive scalar moments has been proposed. The exponents reasonably agree with the calculations in 3d. More... »

PAGES

682-686

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1134/s0021364008120072

DOI

http://dx.doi.org/10.1134/s0021364008120072

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1021466914


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0915", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Interdisciplinary Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Engineering", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Novosibirsk State University", 
          "id": "https://www.grid.ac/institutes/grid.4605.7", 
          "name": [
            "Institute of Automation and Electrometry, Siberian Branch, Russian Academy of Sciences, 630090, Novosibirsk, Russia", 
            "Novosibirsk State University, 630090, Novosibirsk, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Chernykh", 
        "givenName": "A.", 
        "id": "sg:person.015601146673.28", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015601146673.28"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Russian Academy of Sciences", 
          "id": "https://www.grid.ac/institutes/grid.4886.2", 
          "name": [
            "Landau Institute for Theoretical Physics, Russian Academy of Sciences, 117334, Moscow, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Lebedev", 
        "givenName": "V.", 
        "id": "sg:person.01175464362.06", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01175464362.06"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1103/physreve.69.036301", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004192910"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.69.036301", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004192910"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.2140024", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007013595"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0009-2509(63)80029-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009132421"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.70.046304", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014598648"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.70.046304", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014598648"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.92.164501", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016744587"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.92.164501", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016744587"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/revmodphys.73.913", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026773949"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/revmodphys.73.913", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026773949"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00348-007-0429-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028138400", 
          "https://doi.org/10.1007/s00348-007-0429-5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00348-007-0429-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028138400", 
          "https://doi.org/10.1007/s00348-007-0429-5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1146/annurev.fluid.29.1.435", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032018473"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/35011019", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037654713", 
          "https://doi.org/10.1038/35011019"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/35011019", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037654713", 
          "https://doi.org/10.1038/35011019"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1146/annurev.fluid.34.082101.170725", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043268288"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/35015000", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051349076", 
          "https://doi.org/10.1038/35015000"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/35015000", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051349076", 
          "https://doi.org/10.1038/35015000"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.2736341", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057861650"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.90.134501", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060826519"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.90.134501", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060826519"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.95.258101", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060831392"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.95.258101", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060831392"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2008-08", 
    "datePublishedReg": "2008-08-01", 
    "description": "The statistical properties of the passive scalar near walls in random flows assuming a weakness of its diffusion have been investigated. Then, at advanced stages of the passive scalar mixing, its unmixed residue is concentrated in a narrow diffusive layer near the wall. The numerical simulations have revealed the structures responsible for the passive scalar transport to the bulk; these are passive scalar tongues pulled from the diffusive boundary layer. The passive scalar integrated along the wall possesses a well-pronounced scaling behavior. An analytical scheme, giving exponents of the integral passive scalar moments has been proposed. The exponents reasonably agree with the calculations in 3d.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1134/s0021364008120072", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1052174", 
        "issn": [
          "0021-3640", 
          "1090-6487"
        ], 
        "name": "JETP Letters", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "12", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "87"
      }
    ], 
    "name": "Passive scalar structures in peripheral regions of random flows", 
    "pagination": "682-686", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "66475c4cb6ba436f2c6108a8df7fafbac41aeaf42ce99699907e586de1f61b9d"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1134/s0021364008120072"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1021466914"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1134/s0021364008120072", 
      "https://app.dimensions.ai/details/publication/pub.1021466914"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T19:54", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8681_00000499.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1134/S0021364008120072"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1134/s0021364008120072'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1134/s0021364008120072'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1134/s0021364008120072'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1134/s0021364008120072'


 

This table displays all metadata directly associated to this object as RDF triples.

117 TRIPLES      21 PREDICATES      41 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1134/s0021364008120072 schema:about anzsrc-for:09
2 anzsrc-for:0915
3 schema:author N45a26eb33e8c458797db3b31418a4c8d
4 schema:citation sg:pub.10.1007/s00348-007-0429-5
5 sg:pub.10.1038/35011019
6 sg:pub.10.1038/35015000
7 https://doi.org/10.1016/0009-2509(63)80029-9
8 https://doi.org/10.1063/1.2140024
9 https://doi.org/10.1063/1.2736341
10 https://doi.org/10.1103/physreve.69.036301
11 https://doi.org/10.1103/physreve.70.046304
12 https://doi.org/10.1103/physrevlett.90.134501
13 https://doi.org/10.1103/physrevlett.92.164501
14 https://doi.org/10.1103/physrevlett.95.258101
15 https://doi.org/10.1103/revmodphys.73.913
16 https://doi.org/10.1146/annurev.fluid.29.1.435
17 https://doi.org/10.1146/annurev.fluid.34.082101.170725
18 schema:datePublished 2008-08
19 schema:datePublishedReg 2008-08-01
20 schema:description The statistical properties of the passive scalar near walls in random flows assuming a weakness of its diffusion have been investigated. Then, at advanced stages of the passive scalar mixing, its unmixed residue is concentrated in a narrow diffusive layer near the wall. The numerical simulations have revealed the structures responsible for the passive scalar transport to the bulk; these are passive scalar tongues pulled from the diffusive boundary layer. The passive scalar integrated along the wall possesses a well-pronounced scaling behavior. An analytical scheme, giving exponents of the integral passive scalar moments has been proposed. The exponents reasonably agree with the calculations in 3d.
21 schema:genre research_article
22 schema:inLanguage en
23 schema:isAccessibleForFree false
24 schema:isPartOf N3f6f513c057b4a57a762bf3a6ccc084d
25 N9d640fba6a2f4d16b0e616276311f42f
26 sg:journal.1052174
27 schema:name Passive scalar structures in peripheral regions of random flows
28 schema:pagination 682-686
29 schema:productId N0d3f448edb204437ab8a3e7a145e6938
30 N45cb606b4f50409ea40087950f507479
31 N47c70ee5a32c4ffaa8dab9fa55007d53
32 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021466914
33 https://doi.org/10.1134/s0021364008120072
34 schema:sdDatePublished 2019-04-10T19:54
35 schema:sdLicense https://scigraph.springernature.com/explorer/license/
36 schema:sdPublisher N4297df0ea1f141dea9942a4ad845b2c7
37 schema:url http://link.springer.com/10.1134/S0021364008120072
38 sgo:license sg:explorer/license/
39 sgo:sdDataset articles
40 rdf:type schema:ScholarlyArticle
41 N0d3f448edb204437ab8a3e7a145e6938 schema:name readcube_id
42 schema:value 66475c4cb6ba436f2c6108a8df7fafbac41aeaf42ce99699907e586de1f61b9d
43 rdf:type schema:PropertyValue
44 N3f6f513c057b4a57a762bf3a6ccc084d schema:issueNumber 12
45 rdf:type schema:PublicationIssue
46 N4297df0ea1f141dea9942a4ad845b2c7 schema:name Springer Nature - SN SciGraph project
47 rdf:type schema:Organization
48 N45a26eb33e8c458797db3b31418a4c8d rdf:first sg:person.015601146673.28
49 rdf:rest N5bd12fd4220a4e12b2575f90c4d02d3a
50 N45cb606b4f50409ea40087950f507479 schema:name doi
51 schema:value 10.1134/s0021364008120072
52 rdf:type schema:PropertyValue
53 N47c70ee5a32c4ffaa8dab9fa55007d53 schema:name dimensions_id
54 schema:value pub.1021466914
55 rdf:type schema:PropertyValue
56 N5bd12fd4220a4e12b2575f90c4d02d3a rdf:first sg:person.01175464362.06
57 rdf:rest rdf:nil
58 N9d640fba6a2f4d16b0e616276311f42f schema:volumeNumber 87
59 rdf:type schema:PublicationVolume
60 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
61 schema:name Engineering
62 rdf:type schema:DefinedTerm
63 anzsrc-for:0915 schema:inDefinedTermSet anzsrc-for:
64 schema:name Interdisciplinary Engineering
65 rdf:type schema:DefinedTerm
66 sg:journal.1052174 schema:issn 0021-3640
67 1090-6487
68 schema:name JETP Letters
69 rdf:type schema:Periodical
70 sg:person.01175464362.06 schema:affiliation https://www.grid.ac/institutes/grid.4886.2
71 schema:familyName Lebedev
72 schema:givenName V.
73 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01175464362.06
74 rdf:type schema:Person
75 sg:person.015601146673.28 schema:affiliation https://www.grid.ac/institutes/grid.4605.7
76 schema:familyName Chernykh
77 schema:givenName A.
78 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015601146673.28
79 rdf:type schema:Person
80 sg:pub.10.1007/s00348-007-0429-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028138400
81 https://doi.org/10.1007/s00348-007-0429-5
82 rdf:type schema:CreativeWork
83 sg:pub.10.1038/35011019 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037654713
84 https://doi.org/10.1038/35011019
85 rdf:type schema:CreativeWork
86 sg:pub.10.1038/35015000 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051349076
87 https://doi.org/10.1038/35015000
88 rdf:type schema:CreativeWork
89 https://doi.org/10.1016/0009-2509(63)80029-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009132421
90 rdf:type schema:CreativeWork
91 https://doi.org/10.1063/1.2140024 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007013595
92 rdf:type schema:CreativeWork
93 https://doi.org/10.1063/1.2736341 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057861650
94 rdf:type schema:CreativeWork
95 https://doi.org/10.1103/physreve.69.036301 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004192910
96 rdf:type schema:CreativeWork
97 https://doi.org/10.1103/physreve.70.046304 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014598648
98 rdf:type schema:CreativeWork
99 https://doi.org/10.1103/physrevlett.90.134501 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060826519
100 rdf:type schema:CreativeWork
101 https://doi.org/10.1103/physrevlett.92.164501 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016744587
102 rdf:type schema:CreativeWork
103 https://doi.org/10.1103/physrevlett.95.258101 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060831392
104 rdf:type schema:CreativeWork
105 https://doi.org/10.1103/revmodphys.73.913 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026773949
106 rdf:type schema:CreativeWork
107 https://doi.org/10.1146/annurev.fluid.29.1.435 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032018473
108 rdf:type schema:CreativeWork
109 https://doi.org/10.1146/annurev.fluid.34.082101.170725 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043268288
110 rdf:type schema:CreativeWork
111 https://www.grid.ac/institutes/grid.4605.7 schema:alternateName Novosibirsk State University
112 schema:name Institute of Automation and Electrometry, Siberian Branch, Russian Academy of Sciences, 630090, Novosibirsk, Russia
113 Novosibirsk State University, 630090, Novosibirsk, Russia
114 rdf:type schema:Organization
115 https://www.grid.ac/institutes/grid.4886.2 schema:alternateName Russian Academy of Sciences
116 schema:name Landau Institute for Theoretical Physics, Russian Academy of Sciences, 117334, Moscow, Russia
117 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...