Energy gap of a charge density wave in NbSe3 induced by a high magnetic field above the Peierls transition temperature View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2008-06

AUTHORS

A. P. Orlov, Yu. I. Latyshev, D. Vignolles, P. Monceau

ABSTRACT

The effect of a magnetic field on the energy gap of the charge density wave (CDW) in NbSe3 near the temperature Tp2 of the lower Peierls transition has been investigated using interlayer tunneling spectroscopy. It has been shown that the magnetic field increases the energy gap and can even induce it at temperatures higher than Tp2 by 15–20 K. As the field strength increases, the peak amplitude of the gap singularity of the tunneling spectrum first increases, reaches its maximum at 20–30 T, and then decreases. The increase in the gap peak amplitude is attributed to the field-induced improvement of the condition of the CDW nesting, while the decrease in the amplitude in high fields, to the breakdown of the ground state caused by its Zeeman splitting. More... »

PAGES

433-436

References to SciGraph publications

Journal

TITLE

JETP Letters

ISSUE

8

VOLUME

87

Identifiers

URI

http://scigraph.springernature.com/pub.10.1134/s0021364008080092

DOI

http://dx.doi.org/10.1134/s0021364008080092

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1007226048


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0912", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Materials Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Engineering", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Russian Academy of Sciences", 
          "id": "https://www.grid.ac/institutes/grid.4886.2", 
          "name": [
            "Institute of Radio Engineering and Electronics, Russian Academy of Sciences, 125009, Moscow, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Orlov", 
        "givenName": "A. P.", 
        "id": "sg:person.01240063521.42", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01240063521.42"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Russian Academy of Sciences", 
          "id": "https://www.grid.ac/institutes/grid.4886.2", 
          "name": [
            "Institute of Radio Engineering and Electronics, Russian Academy of Sciences, 125009, Moscow, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Latyshev", 
        "givenName": "Yu. I.", 
        "id": "sg:person.010443206556.14", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010443206556.14"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Laboratoire National des Champs Magnetiques Pulse, 31400, Toulouse, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Vignolles", 
        "givenName": "D.", 
        "id": "sg:person.015624012501.69", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015624012501.69"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Institut N\u00e9el", 
          "id": "https://www.grid.ac/institutes/grid.450308.a", 
          "name": [
            "Neel Institute CNRS, 38042, Grenoble, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Monceau", 
        "givenName": "P.", 
        "id": "sg:person.01317035213.95", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01317035213.95"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1134/s0021364006140104", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003686391", 
          "https://doi.org/10.1134/s0021364006140104"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.53.1240", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040204530"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.53.1240", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040204530"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0953-2048/20/2/s17", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044928630"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1051/jphyslet:01984004509043300", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057009808"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0305-4470/36/35/317", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1059078474"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.34.863", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060541758"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.34.863", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060541758"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.55.2336", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060792358"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.55.2336", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060792358"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.55.863", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060792751"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.55.863", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060792751"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.95.266402", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060831420"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.95.266402", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060831420"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.96.116402", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060831962"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.96.116402", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060831962"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/77.783979", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061225918"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2008-06", 
    "datePublishedReg": "2008-06-01", 
    "description": "The effect of a magnetic field on the energy gap of the charge density wave (CDW) in NbSe3 near the temperature Tp2 of the lower Peierls transition has been investigated using interlayer tunneling spectroscopy. It has been shown that the magnetic field increases the energy gap and can even induce it at temperatures higher than Tp2 by 15\u201320 K. As the field strength increases, the peak amplitude of the gap singularity of the tunneling spectrum first increases, reaches its maximum at 20\u201330 T, and then decreases. The increase in the gap peak amplitude is attributed to the field-induced improvement of the condition of the CDW nesting, while the decrease in the amplitude in high fields, to the breakdown of the ground state caused by its Zeeman splitting.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1134/s0021364008080092", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1052174", 
        "issn": [
          "0021-3640", 
          "1090-6487"
        ], 
        "name": "JETP Letters", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "8", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "87"
      }
    ], 
    "name": "Energy gap of a charge density wave in NbSe3 induced by a high magnetic field above the Peierls transition temperature", 
    "pagination": "433-436", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "226b5913269f14435856aa07a2b7d482a90df4fc47c4c41ef86ff88254e4540b"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1134/s0021364008080092"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1007226048"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1134/s0021364008080092", 
      "https://app.dimensions.ai/details/publication/pub.1007226048"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T20:44", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8684_00000498.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1134/S0021364008080092"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1134/s0021364008080092'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1134/s0021364008080092'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1134/s0021364008080092'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1134/s0021364008080092'


 

This table displays all metadata directly associated to this object as RDF triples.

121 TRIPLES      21 PREDICATES      38 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1134/s0021364008080092 schema:about anzsrc-for:09
2 anzsrc-for:0912
3 schema:author N26845d79e24f431aa516de2551e38b4d
4 schema:citation sg:pub.10.1134/s0021364006140104
5 https://doi.org/10.1051/jphyslet:01984004509043300
6 https://doi.org/10.1088/0305-4470/36/35/317
7 https://doi.org/10.1088/0953-2048/20/2/s17
8 https://doi.org/10.1103/physrevb.34.863
9 https://doi.org/10.1103/physrevb.53.1240
10 https://doi.org/10.1103/physrevlett.55.2336
11 https://doi.org/10.1103/physrevlett.55.863
12 https://doi.org/10.1103/physrevlett.95.266402
13 https://doi.org/10.1103/physrevlett.96.116402
14 https://doi.org/10.1109/77.783979
15 schema:datePublished 2008-06
16 schema:datePublishedReg 2008-06-01
17 schema:description The effect of a magnetic field on the energy gap of the charge density wave (CDW) in NbSe3 near the temperature Tp2 of the lower Peierls transition has been investigated using interlayer tunneling spectroscopy. It has been shown that the magnetic field increases the energy gap and can even induce it at temperatures higher than Tp2 by 15–20 K. As the field strength increases, the peak amplitude of the gap singularity of the tunneling spectrum first increases, reaches its maximum at 20–30 T, and then decreases. The increase in the gap peak amplitude is attributed to the field-induced improvement of the condition of the CDW nesting, while the decrease in the amplitude in high fields, to the breakdown of the ground state caused by its Zeeman splitting.
18 schema:genre research_article
19 schema:inLanguage en
20 schema:isAccessibleForFree false
21 schema:isPartOf N68fecbb0e0ec4233876b107bda13a0ca
22 Nea04e1e8eb7445c4befd3445b6ae3a08
23 sg:journal.1052174
24 schema:name Energy gap of a charge density wave in NbSe3 induced by a high magnetic field above the Peierls transition temperature
25 schema:pagination 433-436
26 schema:productId N7f48ebf4baa74aacaf34578fbd7b4c99
27 Ncdd11478520f467b98c4720550ef3738
28 Ne1203730f42c411497e46d2fef6ab7be
29 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007226048
30 https://doi.org/10.1134/s0021364008080092
31 schema:sdDatePublished 2019-04-10T20:44
32 schema:sdLicense https://scigraph.springernature.com/explorer/license/
33 schema:sdPublisher Nfe0226ab5c1a4c8094214bc659cc417d
34 schema:url http://link.springer.com/10.1134/S0021364008080092
35 sgo:license sg:explorer/license/
36 sgo:sdDataset articles
37 rdf:type schema:ScholarlyArticle
38 N00333e3134734316a0b570bef455cef5 rdf:first sg:person.010443206556.14
39 rdf:rest N38fda6af8c76435ebae7f3258e46c1f9
40 N26845d79e24f431aa516de2551e38b4d rdf:first sg:person.01240063521.42
41 rdf:rest N00333e3134734316a0b570bef455cef5
42 N38fda6af8c76435ebae7f3258e46c1f9 rdf:first sg:person.015624012501.69
43 rdf:rest Ncbe9596e4a694ddb92711cc1481bc28f
44 N68fecbb0e0ec4233876b107bda13a0ca schema:volumeNumber 87
45 rdf:type schema:PublicationVolume
46 N7f48ebf4baa74aacaf34578fbd7b4c99 schema:name dimensions_id
47 schema:value pub.1007226048
48 rdf:type schema:PropertyValue
49 Ncbe9596e4a694ddb92711cc1481bc28f rdf:first sg:person.01317035213.95
50 rdf:rest rdf:nil
51 Ncdd11478520f467b98c4720550ef3738 schema:name doi
52 schema:value 10.1134/s0021364008080092
53 rdf:type schema:PropertyValue
54 Nd26f71c594d84deda74ba4146ca335e7 schema:name Laboratoire National des Champs Magnetiques Pulse, 31400, Toulouse, France
55 rdf:type schema:Organization
56 Ne1203730f42c411497e46d2fef6ab7be schema:name readcube_id
57 schema:value 226b5913269f14435856aa07a2b7d482a90df4fc47c4c41ef86ff88254e4540b
58 rdf:type schema:PropertyValue
59 Nea04e1e8eb7445c4befd3445b6ae3a08 schema:issueNumber 8
60 rdf:type schema:PublicationIssue
61 Nfe0226ab5c1a4c8094214bc659cc417d schema:name Springer Nature - SN SciGraph project
62 rdf:type schema:Organization
63 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
64 schema:name Engineering
65 rdf:type schema:DefinedTerm
66 anzsrc-for:0912 schema:inDefinedTermSet anzsrc-for:
67 schema:name Materials Engineering
68 rdf:type schema:DefinedTerm
69 sg:journal.1052174 schema:issn 0021-3640
70 1090-6487
71 schema:name JETP Letters
72 rdf:type schema:Periodical
73 sg:person.010443206556.14 schema:affiliation https://www.grid.ac/institutes/grid.4886.2
74 schema:familyName Latyshev
75 schema:givenName Yu. I.
76 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010443206556.14
77 rdf:type schema:Person
78 sg:person.01240063521.42 schema:affiliation https://www.grid.ac/institutes/grid.4886.2
79 schema:familyName Orlov
80 schema:givenName A. P.
81 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01240063521.42
82 rdf:type schema:Person
83 sg:person.01317035213.95 schema:affiliation https://www.grid.ac/institutes/grid.450308.a
84 schema:familyName Monceau
85 schema:givenName P.
86 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01317035213.95
87 rdf:type schema:Person
88 sg:person.015624012501.69 schema:affiliation Nd26f71c594d84deda74ba4146ca335e7
89 schema:familyName Vignolles
90 schema:givenName D.
91 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015624012501.69
92 rdf:type schema:Person
93 sg:pub.10.1134/s0021364006140104 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003686391
94 https://doi.org/10.1134/s0021364006140104
95 rdf:type schema:CreativeWork
96 https://doi.org/10.1051/jphyslet:01984004509043300 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057009808
97 rdf:type schema:CreativeWork
98 https://doi.org/10.1088/0305-4470/36/35/317 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059078474
99 rdf:type schema:CreativeWork
100 https://doi.org/10.1088/0953-2048/20/2/s17 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044928630
101 rdf:type schema:CreativeWork
102 https://doi.org/10.1103/physrevb.34.863 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060541758
103 rdf:type schema:CreativeWork
104 https://doi.org/10.1103/physrevb.53.1240 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040204530
105 rdf:type schema:CreativeWork
106 https://doi.org/10.1103/physrevlett.55.2336 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060792358
107 rdf:type schema:CreativeWork
108 https://doi.org/10.1103/physrevlett.55.863 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060792751
109 rdf:type schema:CreativeWork
110 https://doi.org/10.1103/physrevlett.95.266402 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060831420
111 rdf:type schema:CreativeWork
112 https://doi.org/10.1103/physrevlett.96.116402 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060831962
113 rdf:type schema:CreativeWork
114 https://doi.org/10.1109/77.783979 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061225918
115 rdf:type schema:CreativeWork
116 https://www.grid.ac/institutes/grid.450308.a schema:alternateName Institut Néel
117 schema:name Neel Institute CNRS, 38042, Grenoble, France
118 rdf:type schema:Organization
119 https://www.grid.ac/institutes/grid.4886.2 schema:alternateName Russian Academy of Sciences
120 schema:name Institute of Radio Engineering and Electronics, Russian Academy of Sciences, 125009, Moscow, Russia
121 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...