Exciton states in strongly coupled asymmetric semimagnetic double quantum dots View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2006-12

AUTHORS

S. V. Zaitsev, M. K. Welsch, A. Forchel, G. Bacher

ABSTRACT

Exciton states in a pair of strongly coupled artificial asymmetric quantum dots (QDs) have been studied in magnetic fields up to B = 8T by means of photoluminescence spectroscopy. The QD molecules have been fabricated using a selective interdiffusion technique applied to asymmetric CdTe/(Cd,Mg,Mn)Te double quantum wells. The lateral confinement potential within the plane induced by the diffusion gives rise to effective zero-dimensional exciton localization. Incorporation of the Mn ions in only one dot results in a pair of QDs with a markedly different spin splitting. In contrast to a positive value of the exciton Lande g factor in nonmagnetic (Cd,Mg)Te-based single QDs, the ground exciton transition in the nonmagnetic QD demonstrates nearly zero g factor, thus, indicating a strong electron coupling between the dots. A new low-energy band with a strong red shift appears at high B signifying formation of the indirect exciton in accordance with our calculations. More... »

PAGES

436-440

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1134/s0021364006200069

DOI

http://dx.doi.org/10.1134/s0021364006200069

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1017406244


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/02", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0202", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Atomic, Molecular, Nuclear, Particle and Plasma Physics", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Institute of Solid State Physics of the Russian Academy of Sciences, 142432, Chernogolovka, Moscow region, Russia", 
          "id": "http://www.grid.ac/institutes/grid.418975.6", 
          "name": [
            "Institute of Solid State Physics of the Russian Academy of Sciences, 142432, Chernogolovka, Moscow region, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zaitsev", 
        "givenName": "S. V.", 
        "id": "sg:person.011610151633.09", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011610151633.09"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Technische Physik, Universit\u00e4t W\u00fcrzburg, D-97074, W\u00fcrzburg, Germany", 
          "id": "http://www.grid.ac/institutes/grid.8379.5", 
          "name": [
            "Technische Physik, Universit\u00e4t W\u00fcrzburg, D-97074, W\u00fcrzburg, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Welsch", 
        "givenName": "M. K.", 
        "id": "sg:person.013775777151.52", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013775777151.52"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Technische Physik, Universit\u00e4t W\u00fcrzburg, D-97074, W\u00fcrzburg, Germany", 
          "id": "http://www.grid.ac/institutes/grid.8379.5", 
          "name": [
            "Technische Physik, Universit\u00e4t W\u00fcrzburg, D-97074, W\u00fcrzburg, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Forchel", 
        "givenName": "A.", 
        "id": "sg:person.0734455677.90", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0734455677.90"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Lehrstuhl Werkstoffe der Elektrotechnik, Universit\u00e4t Duisburg-Essen, D-47057, Duisburg, Germany", 
          "id": "http://www.grid.ac/institutes/grid.5718.b", 
          "name": [
            "Lehrstuhl Werkstoffe der Elektrotechnik, Universit\u00e4t Duisburg-Essen, D-47057, Duisburg, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Bacher", 
        "givenName": "G.", 
        "id": "sg:person.0771451125.66", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0771451125.66"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1134/1.1187396", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053571974", 
          "https://doi.org/10.1134/1.1187396"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2006-12", 
    "datePublishedReg": "2006-12-01", 
    "description": "Exciton states in a pair of strongly coupled artificial asymmetric quantum dots (QDs) have been studied in magnetic fields up to B = 8T by means of photoluminescence spectroscopy. The QD molecules have been fabricated using a selective interdiffusion technique applied to asymmetric CdTe/(Cd,Mg,Mn)Te double quantum wells. The lateral confinement potential within the plane induced by the diffusion gives rise to effective zero-dimensional exciton localization. Incorporation of the Mn ions in only one dot results in a pair of QDs with a markedly different spin splitting. In contrast to a positive value of the exciton Lande g factor in nonmagnetic (Cd,Mg)Te-based single QDs, the ground exciton transition in the nonmagnetic QD demonstrates nearly zero g factor, thus, indicating a strong electron coupling between the dots. A new low-energy band with a strong red shift appears at high B signifying formation of the indirect exciton in accordance with our calculations.", 
    "genre": "article", 
    "id": "sg:pub.10.1134/s0021364006200069", 
    "inLanguage": "en", 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1052174", 
        "issn": [
          "0021-3640", 
          "1090-6487"
        ], 
        "name": "JETP Letters", 
        "publisher": "Pleiades Publishing", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "8", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "84"
      }
    ], 
    "keywords": [
      "quantum dots", 
      "zero-dimensional exciton localization", 
      "pairs of QDs", 
      "double quantum wells", 
      "asymmetric quantum dot", 
      "single quantum dot", 
      "double quantum dot", 
      "lateral confinement potential", 
      "nonmagnetic quantum dots", 
      "different spin splitting", 
      "strong electron coupling", 
      "low-energy band", 
      "quantum wells", 
      "new low-energy band", 
      "indirect excitons", 
      "confinement potential", 
      "spin splitting", 
      "exciton transitions", 
      "strong red shift", 
      "exciton localization", 
      "dots results", 
      "magnetic field", 
      "QD molecules", 
      "photoluminescence spectroscopy", 
      "electron coupling", 
      "interdiffusion technique", 
      "excitons", 
      "red shift", 
      "Mn ions", 
      "dots", 
      "spectroscopy", 
      "splitting", 
      "ions", 
      "nonmagnetic", 
      "wells", 
      "coupling", 
      "calculations", 
      "field", 
      "transition", 
      "pairs", 
      "plane", 
      "Landes", 
      "band", 
      "shift", 
      "positive values", 
      "diffusion", 
      "molecules", 
      "formation", 
      "technique", 
      "potential", 
      "Cd", 
      "Mg", 
      "incorporation", 
      "means", 
      "rise", 
      "values", 
      "contrast", 
      "localization", 
      "results", 
      "accordance", 
      "factors", 
      "artificial asymmetric quantum dots", 
      "selective interdiffusion technique", 
      "exciton Lande", 
      "ground exciton transition", 
      "asymmetric semimagnetic double quantum dots", 
      "semimagnetic double quantum dots"
    ], 
    "name": "Exciton states in strongly coupled asymmetric semimagnetic double quantum dots", 
    "pagination": "436-440", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1017406244"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1134/s0021364006200069"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1134/s0021364006200069", 
      "https://app.dimensions.ai/details/publication/pub.1017406244"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-01-01T18:16", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220101/entities/gbq_results/article/article_424.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1134/s0021364006200069"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1134/s0021364006200069'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1134/s0021364006200069'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1134/s0021364006200069'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1134/s0021364006200069'


 

This table displays all metadata directly associated to this object as RDF triples.

156 TRIPLES      22 PREDICATES      94 URIs      85 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1134/s0021364006200069 schema:about anzsrc-for:02
2 anzsrc-for:0202
3 schema:author N52c5e7c7b1794b2b85c3638e65dce476
4 schema:citation sg:pub.10.1134/1.1187396
5 schema:datePublished 2006-12
6 schema:datePublishedReg 2006-12-01
7 schema:description Exciton states in a pair of strongly coupled artificial asymmetric quantum dots (QDs) have been studied in magnetic fields up to B = 8T by means of photoluminescence spectroscopy. The QD molecules have been fabricated using a selective interdiffusion technique applied to asymmetric CdTe/(Cd,Mg,Mn)Te double quantum wells. The lateral confinement potential within the plane induced by the diffusion gives rise to effective zero-dimensional exciton localization. Incorporation of the Mn ions in only one dot results in a pair of QDs with a markedly different spin splitting. In contrast to a positive value of the exciton Lande g factor in nonmagnetic (Cd,Mg)Te-based single QDs, the ground exciton transition in the nonmagnetic QD demonstrates nearly zero g factor, thus, indicating a strong electron coupling between the dots. A new low-energy band with a strong red shift appears at high B signifying formation of the indirect exciton in accordance with our calculations.
8 schema:genre article
9 schema:inLanguage en
10 schema:isAccessibleForFree false
11 schema:isPartOf Na471f79808f84fcc8cac78a47eaa69eb
12 Ne84b921ec71e4614a748b08946aa0ec8
13 sg:journal.1052174
14 schema:keywords Cd
15 Landes
16 Mg
17 Mn ions
18 QD molecules
19 accordance
20 artificial asymmetric quantum dots
21 asymmetric quantum dot
22 asymmetric semimagnetic double quantum dots
23 band
24 calculations
25 confinement potential
26 contrast
27 coupling
28 different spin splitting
29 diffusion
30 dots
31 dots results
32 double quantum dot
33 double quantum wells
34 electron coupling
35 exciton Lande
36 exciton localization
37 exciton transitions
38 excitons
39 factors
40 field
41 formation
42 ground exciton transition
43 incorporation
44 indirect excitons
45 interdiffusion technique
46 ions
47 lateral confinement potential
48 localization
49 low-energy band
50 magnetic field
51 means
52 molecules
53 new low-energy band
54 nonmagnetic
55 nonmagnetic quantum dots
56 pairs
57 pairs of QDs
58 photoluminescence spectroscopy
59 plane
60 positive values
61 potential
62 quantum dots
63 quantum wells
64 red shift
65 results
66 rise
67 selective interdiffusion technique
68 semimagnetic double quantum dots
69 shift
70 single quantum dot
71 spectroscopy
72 spin splitting
73 splitting
74 strong electron coupling
75 strong red shift
76 technique
77 transition
78 values
79 wells
80 zero-dimensional exciton localization
81 schema:name Exciton states in strongly coupled asymmetric semimagnetic double quantum dots
82 schema:pagination 436-440
83 schema:productId N18982f6b1f6b48ccbe0b6747010f4788
84 Nf68991b3014a49498f3babe50d0f52ee
85 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017406244
86 https://doi.org/10.1134/s0021364006200069
87 schema:sdDatePublished 2022-01-01T18:16
88 schema:sdLicense https://scigraph.springernature.com/explorer/license/
89 schema:sdPublisher Nf17fd2296b16486a8fe8f6df50841076
90 schema:url https://doi.org/10.1134/s0021364006200069
91 sgo:license sg:explorer/license/
92 sgo:sdDataset articles
93 rdf:type schema:ScholarlyArticle
94 N18982f6b1f6b48ccbe0b6747010f4788 schema:name doi
95 schema:value 10.1134/s0021364006200069
96 rdf:type schema:PropertyValue
97 N52c5e7c7b1794b2b85c3638e65dce476 rdf:first sg:person.011610151633.09
98 rdf:rest Nabfb5b2b8aff4a339ced86b215deb80a
99 N8781fa57dc2247bfb7351c1dd8957a3a rdf:first sg:person.0771451125.66
100 rdf:rest rdf:nil
101 Na471f79808f84fcc8cac78a47eaa69eb schema:volumeNumber 84
102 rdf:type schema:PublicationVolume
103 Nabfb5b2b8aff4a339ced86b215deb80a rdf:first sg:person.013775777151.52
104 rdf:rest Nd775a8e7bbdd4a5b8cb8c327889e7fc4
105 Nd775a8e7bbdd4a5b8cb8c327889e7fc4 rdf:first sg:person.0734455677.90
106 rdf:rest N8781fa57dc2247bfb7351c1dd8957a3a
107 Ne84b921ec71e4614a748b08946aa0ec8 schema:issueNumber 8
108 rdf:type schema:PublicationIssue
109 Nf17fd2296b16486a8fe8f6df50841076 schema:name Springer Nature - SN SciGraph project
110 rdf:type schema:Organization
111 Nf68991b3014a49498f3babe50d0f52ee schema:name dimensions_id
112 schema:value pub.1017406244
113 rdf:type schema:PropertyValue
114 anzsrc-for:02 schema:inDefinedTermSet anzsrc-for:
115 schema:name Physical Sciences
116 rdf:type schema:DefinedTerm
117 anzsrc-for:0202 schema:inDefinedTermSet anzsrc-for:
118 schema:name Atomic, Molecular, Nuclear, Particle and Plasma Physics
119 rdf:type schema:DefinedTerm
120 sg:journal.1052174 schema:issn 0021-3640
121 1090-6487
122 schema:name JETP Letters
123 schema:publisher Pleiades Publishing
124 rdf:type schema:Periodical
125 sg:person.011610151633.09 schema:affiliation grid-institutes:grid.418975.6
126 schema:familyName Zaitsev
127 schema:givenName S. V.
128 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011610151633.09
129 rdf:type schema:Person
130 sg:person.013775777151.52 schema:affiliation grid-institutes:grid.8379.5
131 schema:familyName Welsch
132 schema:givenName M. K.
133 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013775777151.52
134 rdf:type schema:Person
135 sg:person.0734455677.90 schema:affiliation grid-institutes:grid.8379.5
136 schema:familyName Forchel
137 schema:givenName A.
138 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0734455677.90
139 rdf:type schema:Person
140 sg:person.0771451125.66 schema:affiliation grid-institutes:grid.5718.b
141 schema:familyName Bacher
142 schema:givenName G.
143 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0771451125.66
144 rdf:type schema:Person
145 sg:pub.10.1134/1.1187396 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053571974
146 https://doi.org/10.1134/1.1187396
147 rdf:type schema:CreativeWork
148 grid-institutes:grid.418975.6 schema:alternateName Institute of Solid State Physics of the Russian Academy of Sciences, 142432, Chernogolovka, Moscow region, Russia
149 schema:name Institute of Solid State Physics of the Russian Academy of Sciences, 142432, Chernogolovka, Moscow region, Russia
150 rdf:type schema:Organization
151 grid-institutes:grid.5718.b schema:alternateName Lehrstuhl Werkstoffe der Elektrotechnik, Universität Duisburg-Essen, D-47057, Duisburg, Germany
152 schema:name Lehrstuhl Werkstoffe der Elektrotechnik, Universität Duisburg-Essen, D-47057, Duisburg, Germany
153 rdf:type schema:Organization
154 grid-institutes:grid.8379.5 schema:alternateName Technische Physik, Universität Würzburg, D-97074, Würzburg, Germany
155 schema:name Technische Physik, Universität Würzburg, D-97074, Würzburg, Germany
156 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...