Bound states in the continuum in open Aharonov-Bohm rings View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2006-12

AUTHORS

E. N. Bulgakov, K. N. Pichugin, A. F. Sadreev, I. Rotter

ABSTRACT

Using the formalism of the effective Hamiltonian, we consider bound states in a continuum (BIC). They are nonhermitian effective Hamiltonian eigenstates that have real eigenvalues. It is shown that BICs are orthogonal to open channels of the leads, i.e., disconnected from the continuum. As a result, BICs can be superposed to a transport solution with an arbitrary coefficient and exist in a propagation band. The one-dimensional Aharonov-Bohm rings that are opened by attaching single-channel leads to them allow exact consideration of BICs. BICs occur at discrete values of the energy and magnetic flux; however, it’s realization strongly depends on the way to the BIC point. More... »

PAGES

430-435

Identifiers

URI

http://scigraph.springernature.com/pub.10.1134/s0021364006200057

DOI

http://dx.doi.org/10.1134/s0021364006200057

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1020596259


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0103", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Numerical and Computational Mathematics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Institute of Physics", 
          "id": "https://www.grid.ac/institutes/grid.465301.5", 
          "name": [
            "Institute of Physics, Russian Academy of Sciences, 660036, Krasnoyarsk, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Bulgakov", 
        "givenName": "E. N.", 
        "id": "sg:person.01221020532.23", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01221020532.23"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Institute of Physics", 
          "id": "https://www.grid.ac/institutes/grid.465301.5", 
          "name": [
            "Institute of Physics, Russian Academy of Sciences, 660036, Krasnoyarsk, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Pichugin", 
        "givenName": "K. N.", 
        "id": "sg:person.012322631635.93", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012322631635.93"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Institute of Physics", 
          "id": "https://www.grid.ac/institutes/grid.465301.5", 
          "name": [
            "Institute of Physics, Russian Academy of Sciences, 660036, Krasnoyarsk, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Sadreev", 
        "givenName": "A. F.", 
        "id": "sg:person.0744715637.37", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0744715637.37"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Max Planck Institute for the Physics of Complex Systems", 
          "id": "https://www.grid.ac/institutes/grid.419560.f", 
          "name": [
            "Max-Planck-Institut f\u00fcr Physik komplexer Systeme, D-01187, Dresden, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Rotter", 
        "givenName": "I.", 
        "id": "sg:person.01014732025.58", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01014732025.58"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1038/358565a0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000888750", 
          "https://doi.org/10.1038/358565a0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.67.245410", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007567197"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.67.245410", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007567197"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1134/1.2150869", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008212464", 
          "https://doi.org/10.1134/1.2150869"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0370-1573(02)00366-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008794305"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0370-1573(02)00366-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008794305"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.70.233315", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017221511"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.70.233315", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017221511"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.68.245317", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018952743"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.68.245317", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018952743"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1209/epl/i2004-10258-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032811676"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0370-1573(00)00065-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038802164"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.80.1710", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040910014"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.80.1710", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040910014"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0305-4470/35/15/303", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046780581"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-642-88128-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047321736", 
          "https://doi.org/10.1007/978-3-642-88128-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-642-88128-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047321736", 
          "https://doi.org/10.1007/978-3-642-88128-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.69.066201", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052786864"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.69.066201", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052786864"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0305-4470/19/18/029", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1059068249"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0305-4470/38/45/007", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1059079397"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0305-4470/38/45/007", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1059079397"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.11.446", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060465163"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.11.446", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060465163"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.32.3231", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060473960"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.32.3231", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060473960"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.52.3932", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060490860"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.52.3932", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060490860"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.45.3593", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060561415"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.45.3593", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060561415"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.49.17123", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060570434"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.49.17123", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060570434"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.50.8460", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060574479"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.50.8460", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060574479"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.66.035331", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060603819"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.66.035331", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060603819"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.67.195335", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060606496"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.67.195335", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060606496"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.73.235342", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060617895"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.73.235342", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060617895"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.90.013001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060826101"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.90.013001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060826101"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1017/cbo9780511805776", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1098777352"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2006-12", 
    "datePublishedReg": "2006-12-01", 
    "description": "Using the formalism of the effective Hamiltonian, we consider bound states in a continuum (BIC). They are nonhermitian effective Hamiltonian eigenstates that have real eigenvalues. It is shown that BICs are orthogonal to open channels of the leads, i.e., disconnected from the continuum. As a result, BICs can be superposed to a transport solution with an arbitrary coefficient and exist in a propagation band. The one-dimensional Aharonov-Bohm rings that are opened by attaching single-channel leads to them allow exact consideration of BICs. BICs occur at discrete values of the energy and magnetic flux; however, it\u2019s realization strongly depends on the way to the BIC point.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1134/s0021364006200057", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1052174", 
        "issn": [
          "0021-3640", 
          "1090-6487"
        ], 
        "name": "JETP Letters", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "8", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "84"
      }
    ], 
    "name": "Bound states in the continuum in open Aharonov-Bohm rings", 
    "pagination": "430-435", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "62234b0f960615484743f8c22b0f365d17a975cd7fac2de5f3768038a69efb85"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1134/s0021364006200057"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1020596259"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1134/s0021364006200057", 
      "https://app.dimensions.ai/details/publication/pub.1020596259"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T17:28", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8672_00000499.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1134/S0021364006200057"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1134/s0021364006200057'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1134/s0021364006200057'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1134/s0021364006200057'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1134/s0021364006200057'


 

This table displays all metadata directly associated to this object as RDF triples.

163 TRIPLES      21 PREDICATES      52 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1134/s0021364006200057 schema:about anzsrc-for:01
2 anzsrc-for:0103
3 schema:author Na0fefd9679e94ab0becb83a5e93b68b7
4 schema:citation sg:pub.10.1007/978-3-642-88128-2
5 sg:pub.10.1038/358565a0
6 sg:pub.10.1134/1.2150869
7 https://doi.org/10.1016/s0370-1573(00)00065-x
8 https://doi.org/10.1016/s0370-1573(02)00366-6
9 https://doi.org/10.1017/cbo9780511805776
10 https://doi.org/10.1088/0305-4470/19/18/029
11 https://doi.org/10.1088/0305-4470/35/15/303
12 https://doi.org/10.1088/0305-4470/38/45/007
13 https://doi.org/10.1103/physreva.11.446
14 https://doi.org/10.1103/physreva.32.3231
15 https://doi.org/10.1103/physreva.52.3932
16 https://doi.org/10.1103/physrevb.45.3593
17 https://doi.org/10.1103/physrevb.49.17123
18 https://doi.org/10.1103/physrevb.50.8460
19 https://doi.org/10.1103/physrevb.66.035331
20 https://doi.org/10.1103/physrevb.67.195335
21 https://doi.org/10.1103/physrevb.67.245410
22 https://doi.org/10.1103/physrevb.68.245317
23 https://doi.org/10.1103/physrevb.70.233315
24 https://doi.org/10.1103/physrevb.73.235342
25 https://doi.org/10.1103/physreve.69.066201
26 https://doi.org/10.1103/physrevlett.80.1710
27 https://doi.org/10.1103/physrevlett.90.013001
28 https://doi.org/10.1209/epl/i2004-10258-6
29 schema:datePublished 2006-12
30 schema:datePublishedReg 2006-12-01
31 schema:description Using the formalism of the effective Hamiltonian, we consider bound states in a continuum (BIC). They are nonhermitian effective Hamiltonian eigenstates that have real eigenvalues. It is shown that BICs are orthogonal to open channels of the leads, i.e., disconnected from the continuum. As a result, BICs can be superposed to a transport solution with an arbitrary coefficient and exist in a propagation band. The one-dimensional Aharonov-Bohm rings that are opened by attaching single-channel leads to them allow exact consideration of BICs. BICs occur at discrete values of the energy and magnetic flux; however, it’s realization strongly depends on the way to the BIC point.
32 schema:genre research_article
33 schema:inLanguage en
34 schema:isAccessibleForFree true
35 schema:isPartOf Ne7485339680747ea838c74a90816f3cc
36 Nf76f478367cd48969c23d58031f0e34a
37 sg:journal.1052174
38 schema:name Bound states in the continuum in open Aharonov-Bohm rings
39 schema:pagination 430-435
40 schema:productId N5305311d40d948c296d95c6465752e50
41 Ndbfa924b392049a4ad5dfe467fd0b00d
42 Nf656b6e4d3ec40d39ee7e0e9a09b71d4
43 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020596259
44 https://doi.org/10.1134/s0021364006200057
45 schema:sdDatePublished 2019-04-10T17:28
46 schema:sdLicense https://scigraph.springernature.com/explorer/license/
47 schema:sdPublisher Nc597e18a4d11427e91f5b887029b55dc
48 schema:url http://link.springer.com/10.1134/S0021364006200057
49 sgo:license sg:explorer/license/
50 sgo:sdDataset articles
51 rdf:type schema:ScholarlyArticle
52 N5305311d40d948c296d95c6465752e50 schema:name doi
53 schema:value 10.1134/s0021364006200057
54 rdf:type schema:PropertyValue
55 Na0fefd9679e94ab0becb83a5e93b68b7 rdf:first sg:person.01221020532.23
56 rdf:rest Ne534f106415546f78ae29f9e58901b24
57 Nb54f30012d2047669d72421be45ed339 rdf:first sg:person.0744715637.37
58 rdf:rest Nde1cc0bfe3cb41a199a884ff46ad710f
59 Nc597e18a4d11427e91f5b887029b55dc schema:name Springer Nature - SN SciGraph project
60 rdf:type schema:Organization
61 Ndbfa924b392049a4ad5dfe467fd0b00d schema:name readcube_id
62 schema:value 62234b0f960615484743f8c22b0f365d17a975cd7fac2de5f3768038a69efb85
63 rdf:type schema:PropertyValue
64 Nde1cc0bfe3cb41a199a884ff46ad710f rdf:first sg:person.01014732025.58
65 rdf:rest rdf:nil
66 Ne534f106415546f78ae29f9e58901b24 rdf:first sg:person.012322631635.93
67 rdf:rest Nb54f30012d2047669d72421be45ed339
68 Ne7485339680747ea838c74a90816f3cc schema:issueNumber 8
69 rdf:type schema:PublicationIssue
70 Nf656b6e4d3ec40d39ee7e0e9a09b71d4 schema:name dimensions_id
71 schema:value pub.1020596259
72 rdf:type schema:PropertyValue
73 Nf76f478367cd48969c23d58031f0e34a schema:volumeNumber 84
74 rdf:type schema:PublicationVolume
75 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
76 schema:name Mathematical Sciences
77 rdf:type schema:DefinedTerm
78 anzsrc-for:0103 schema:inDefinedTermSet anzsrc-for:
79 schema:name Numerical and Computational Mathematics
80 rdf:type schema:DefinedTerm
81 sg:journal.1052174 schema:issn 0021-3640
82 1090-6487
83 schema:name JETP Letters
84 rdf:type schema:Periodical
85 sg:person.01014732025.58 schema:affiliation https://www.grid.ac/institutes/grid.419560.f
86 schema:familyName Rotter
87 schema:givenName I.
88 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01014732025.58
89 rdf:type schema:Person
90 sg:person.01221020532.23 schema:affiliation https://www.grid.ac/institutes/grid.465301.5
91 schema:familyName Bulgakov
92 schema:givenName E. N.
93 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01221020532.23
94 rdf:type schema:Person
95 sg:person.012322631635.93 schema:affiliation https://www.grid.ac/institutes/grid.465301.5
96 schema:familyName Pichugin
97 schema:givenName K. N.
98 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012322631635.93
99 rdf:type schema:Person
100 sg:person.0744715637.37 schema:affiliation https://www.grid.ac/institutes/grid.465301.5
101 schema:familyName Sadreev
102 schema:givenName A. F.
103 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0744715637.37
104 rdf:type schema:Person
105 sg:pub.10.1007/978-3-642-88128-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047321736
106 https://doi.org/10.1007/978-3-642-88128-2
107 rdf:type schema:CreativeWork
108 sg:pub.10.1038/358565a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000888750
109 https://doi.org/10.1038/358565a0
110 rdf:type schema:CreativeWork
111 sg:pub.10.1134/1.2150869 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008212464
112 https://doi.org/10.1134/1.2150869
113 rdf:type schema:CreativeWork
114 https://doi.org/10.1016/s0370-1573(00)00065-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1038802164
115 rdf:type schema:CreativeWork
116 https://doi.org/10.1016/s0370-1573(02)00366-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008794305
117 rdf:type schema:CreativeWork
118 https://doi.org/10.1017/cbo9780511805776 schema:sameAs https://app.dimensions.ai/details/publication/pub.1098777352
119 rdf:type schema:CreativeWork
120 https://doi.org/10.1088/0305-4470/19/18/029 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059068249
121 rdf:type schema:CreativeWork
122 https://doi.org/10.1088/0305-4470/35/15/303 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046780581
123 rdf:type schema:CreativeWork
124 https://doi.org/10.1088/0305-4470/38/45/007 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059079397
125 rdf:type schema:CreativeWork
126 https://doi.org/10.1103/physreva.11.446 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060465163
127 rdf:type schema:CreativeWork
128 https://doi.org/10.1103/physreva.32.3231 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060473960
129 rdf:type schema:CreativeWork
130 https://doi.org/10.1103/physreva.52.3932 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060490860
131 rdf:type schema:CreativeWork
132 https://doi.org/10.1103/physrevb.45.3593 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060561415
133 rdf:type schema:CreativeWork
134 https://doi.org/10.1103/physrevb.49.17123 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060570434
135 rdf:type schema:CreativeWork
136 https://doi.org/10.1103/physrevb.50.8460 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060574479
137 rdf:type schema:CreativeWork
138 https://doi.org/10.1103/physrevb.66.035331 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060603819
139 rdf:type schema:CreativeWork
140 https://doi.org/10.1103/physrevb.67.195335 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060606496
141 rdf:type schema:CreativeWork
142 https://doi.org/10.1103/physrevb.67.245410 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007567197
143 rdf:type schema:CreativeWork
144 https://doi.org/10.1103/physrevb.68.245317 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018952743
145 rdf:type schema:CreativeWork
146 https://doi.org/10.1103/physrevb.70.233315 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017221511
147 rdf:type schema:CreativeWork
148 https://doi.org/10.1103/physrevb.73.235342 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060617895
149 rdf:type schema:CreativeWork
150 https://doi.org/10.1103/physreve.69.066201 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052786864
151 rdf:type schema:CreativeWork
152 https://doi.org/10.1103/physrevlett.80.1710 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040910014
153 rdf:type schema:CreativeWork
154 https://doi.org/10.1103/physrevlett.90.013001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060826101
155 rdf:type schema:CreativeWork
156 https://doi.org/10.1209/epl/i2004-10258-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032811676
157 rdf:type schema:CreativeWork
158 https://www.grid.ac/institutes/grid.419560.f schema:alternateName Max Planck Institute for the Physics of Complex Systems
159 schema:name Max-Planck-Institut für Physik komplexer Systeme, D-01187, Dresden, Germany
160 rdf:type schema:Organization
161 https://www.grid.ac/institutes/grid.465301.5 schema:alternateName Institute of Physics
162 schema:name Institute of Physics, Russian Academy of Sciences, 660036, Krasnoyarsk, Russia
163 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...