Ontology type: schema:ScholarlyArticle
2006-11
AUTHORSS. V. Zaitsev, A. S. Brichkin, P. S. Dorozhkin, G. Bacher
ABSTRACTThe possibility of magnetic field control of the spectral and polarization characteristics of exciton recombination is examined in Cd(Mg, Mn) Te-based asymmetric double quantum wells. At low fields, the exciton transition in a semimagnetic well is higher in energy than that in a nonmagnetic well and the interwell exciton relaxation is fast. In contrast, when the energy order of the exciton transitions reverses at high fields, unexpectedly slow relaxation of σ− polarized excitons from the nonmagnetic well to the σ+-polarized ground state in the semimagnetic well is observed. Strong dependence of the total circular polarization degree on the heavy-light hole splitting Δhh-lh in the nonmagnetic well is found and attributed to the spin dependent interwell tunneling controlled by exciton spin relaxation. Such a slowing down of the relaxation allows separation of oppositely spin-polarized excitons in adjacent wells. More... »
PAGES340-343
http://scigraph.springernature.com/pub.10.1134/s0021364006180135
DOIhttp://dx.doi.org/10.1134/s0021364006180135
DIMENSIONShttps://app.dimensions.ai/details/publication/pub.1012161152
JSON-LD is the canonical representation for SciGraph data.
TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT
[
{
"@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json",
"about": [
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/02",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Physical Sciences",
"type": "DefinedTerm"
},
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0299",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Other Physical Sciences",
"type": "DefinedTerm"
}
],
"author": [
{
"affiliation": {
"alternateName": "Institute of Solid State Physics, Russian Academy of Sciences, 142432, Chernogolovka, Moscow region, Russia",
"id": "http://www.grid.ac/institutes/grid.418975.6",
"name": [
"Institute of Solid State Physics, Russian Academy of Sciences, 142432, Chernogolovka, Moscow region, Russia"
],
"type": "Organization"
},
"familyName": "Zaitsev",
"givenName": "S. V.",
"id": "sg:person.011610151633.09",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011610151633.09"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Institute of Solid State Physics, Russian Academy of Sciences, 142432, Chernogolovka, Moscow region, Russia",
"id": "http://www.grid.ac/institutes/grid.418975.6",
"name": [
"Institute of Solid State Physics, Russian Academy of Sciences, 142432, Chernogolovka, Moscow region, Russia"
],
"type": "Organization"
},
"familyName": "Brichkin",
"givenName": "A. S.",
"id": "sg:person.012567653177.24",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012567653177.24"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Institute of Solid State Physics, Russian Academy of Sciences, 142432, Chernogolovka, Moscow region, Russia",
"id": "http://www.grid.ac/institutes/grid.418975.6",
"name": [
"Institute of Solid State Physics, Russian Academy of Sciences, 142432, Chernogolovka, Moscow region, Russia"
],
"type": "Organization"
},
"familyName": "Dorozhkin",
"givenName": "P. S.",
"id": "sg:person.01125743642.29",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01125743642.29"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Lehistuhl Werkstoffe der Elektrotechnik, Universit\u00e4t Duisburg-Essen, D-47057, Duisburg, Germany",
"id": "http://www.grid.ac/institutes/grid.5718.b",
"name": [
"Lehistuhl Werkstoffe der Elektrotechnik, Universit\u00e4t Duisburg-Essen, D-47057, Duisburg, Germany"
],
"type": "Organization"
},
"familyName": "Bacher",
"givenName": "G.",
"id": "sg:person.0771451125.66",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0771451125.66"
],
"type": "Person"
}
],
"datePublished": "2006-11",
"datePublishedReg": "2006-11-01",
"description": "The possibility of magnetic field control of the spectral and polarization characteristics of exciton recombination is examined in Cd(Mg, Mn) Te-based asymmetric double quantum wells. At low fields, the exciton transition in a semimagnetic well is higher in energy than that in a nonmagnetic well and the interwell exciton relaxation is fast. In contrast, when the energy order of the exciton transitions reverses at high fields, unexpectedly slow relaxation of \u03c3\u2212 polarized excitons from the nonmagnetic well to the \u03c3+-polarized ground state in the semimagnetic well is observed. Strong dependence of the total circular polarization degree on the heavy-light hole splitting \u0394hh-lh in the nonmagnetic well is found and attributed to the spin dependent interwell tunneling controlled by exciton spin relaxation. Such a slowing down of the relaxation allows separation of oppositely spin-polarized excitons in adjacent wells.",
"genre": "article",
"id": "sg:pub.10.1134/s0021364006180135",
"inLanguage": "en",
"isAccessibleForFree": false,
"isPartOf": [
{
"id": "sg:journal.1052174",
"issn": [
"0021-3640",
"1090-6487"
],
"name": "JETP Letters",
"publisher": "Pleiades Publishing",
"type": "Periodical"
},
{
"issueNumber": "6",
"type": "PublicationIssue"
},
{
"type": "PublicationVolume",
"volumeNumber": "84"
}
],
"keywords": [
"asymmetric double quantum wells",
"double quantum wells",
"nonmagnetic well",
"quantum wells",
"exciton relaxation",
"spin-polarized excitons",
"circular polarization degree",
"exciton spin relaxation",
"magnetic field control",
"interwell tunneling",
"polarization degree",
"exciton transitions",
"spin relaxation",
"ground state",
"exciton recombination",
"high fields",
"field control",
"low fields",
"polarization characteristics",
"slow relaxation",
"energy order",
"excitons",
"strong dependence",
"relaxation",
"adjacent wells",
"wells",
"tunneling",
"field",
"energy",
"Te",
"transition",
"dependence",
"recombination",
"state",
"slowing",
"possibility",
"separation",
"order",
"reverses",
"contrast",
"characteristics",
"degree",
"control"
],
"name": "Interwell exciton relaxation in semimagnetic asymmetric double quantum wells",
"pagination": "340-343",
"productId": [
{
"name": "dimensions_id",
"type": "PropertyValue",
"value": [
"pub.1012161152"
]
},
{
"name": "doi",
"type": "PropertyValue",
"value": [
"10.1134/s0021364006180135"
]
}
],
"sameAs": [
"https://doi.org/10.1134/s0021364006180135",
"https://app.dimensions.ai/details/publication/pub.1012161152"
],
"sdDataset": "articles",
"sdDatePublished": "2022-05-20T07:24",
"sdLicense": "https://scigraph.springernature.com/explorer/license/",
"sdPublisher": {
"name": "Springer Nature - SN SciGraph project",
"type": "Organization"
},
"sdSource": "s3://com-springernature-scigraph/baseset/20220519/entities/gbq_results/article/article_430.jsonl",
"type": "ScholarlyArticle",
"url": "https://doi.org/10.1134/s0021364006180135"
}
]
Download the RDF metadata as: json-ld nt turtle xml License info
JSON-LD is a popular format for linked data which is fully compatible with JSON.
curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1134/s0021364006180135'
N-Triples is a line-based linked data format ideal for batch operations.
curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1134/s0021364006180135'
Turtle is a human-readable linked data format.
curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1134/s0021364006180135'
RDF/XML is a standard XML format for linked data.
curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1134/s0021364006180135'
This table displays all metadata directly associated to this object as RDF triples.
125 TRIPLES
21 PREDICATES
69 URIs
61 LITERALS
6 BLANK NODES
Subject | Predicate | Object | |
---|---|---|---|
1 | sg:pub.10.1134/s0021364006180135 | schema:about | anzsrc-for:02 |
2 | ″ | ″ | anzsrc-for:0299 |
3 | ″ | schema:author | Nc0726eaceff04edb973c233ca95516ae |
4 | ″ | schema:datePublished | 2006-11 |
5 | ″ | schema:datePublishedReg | 2006-11-01 |
6 | ″ | schema:description | The possibility of magnetic field control of the spectral and polarization characteristics of exciton recombination is examined in Cd(Mg, Mn) Te-based asymmetric double quantum wells. At low fields, the exciton transition in a semimagnetic well is higher in energy than that in a nonmagnetic well and the interwell exciton relaxation is fast. In contrast, when the energy order of the exciton transitions reverses at high fields, unexpectedly slow relaxation of σ− polarized excitons from the nonmagnetic well to the σ+-polarized ground state in the semimagnetic well is observed. Strong dependence of the total circular polarization degree on the heavy-light hole splitting Δhh-lh in the nonmagnetic well is found and attributed to the spin dependent interwell tunneling controlled by exciton spin relaxation. Such a slowing down of the relaxation allows separation of oppositely spin-polarized excitons in adjacent wells. |
7 | ″ | schema:genre | article |
8 | ″ | schema:inLanguage | en |
9 | ″ | schema:isAccessibleForFree | false |
10 | ″ | schema:isPartOf | N7ad0c25a159a4b8ba72a2c62353f587a |
11 | ″ | ″ | N7c23a496ce8e4ef8bd94ce5bea5c2f31 |
12 | ″ | ″ | sg:journal.1052174 |
13 | ″ | schema:keywords | Te |
14 | ″ | ″ | adjacent wells |
15 | ″ | ″ | asymmetric double quantum wells |
16 | ″ | ″ | characteristics |
17 | ″ | ″ | circular polarization degree |
18 | ″ | ″ | contrast |
19 | ″ | ″ | control |
20 | ″ | ″ | degree |
21 | ″ | ″ | dependence |
22 | ″ | ″ | double quantum wells |
23 | ″ | ″ | energy |
24 | ″ | ″ | energy order |
25 | ″ | ″ | exciton recombination |
26 | ″ | ″ | exciton relaxation |
27 | ″ | ″ | exciton spin relaxation |
28 | ″ | ″ | exciton transitions |
29 | ″ | ″ | excitons |
30 | ″ | ″ | field |
31 | ″ | ″ | field control |
32 | ″ | ″ | ground state |
33 | ″ | ″ | high fields |
34 | ″ | ″ | interwell tunneling |
35 | ″ | ″ | low fields |
36 | ″ | ″ | magnetic field control |
37 | ″ | ″ | nonmagnetic well |
38 | ″ | ″ | order |
39 | ″ | ″ | polarization characteristics |
40 | ″ | ″ | polarization degree |
41 | ″ | ″ | possibility |
42 | ″ | ″ | quantum wells |
43 | ″ | ″ | recombination |
44 | ″ | ″ | relaxation |
45 | ″ | ″ | reverses |
46 | ″ | ″ | separation |
47 | ″ | ″ | slow relaxation |
48 | ″ | ″ | slowing |
49 | ″ | ″ | spin relaxation |
50 | ″ | ″ | spin-polarized excitons |
51 | ″ | ″ | state |
52 | ″ | ″ | strong dependence |
53 | ″ | ″ | transition |
54 | ″ | ″ | tunneling |
55 | ″ | ″ | wells |
56 | ″ | schema:name | Interwell exciton relaxation in semimagnetic asymmetric double quantum wells |
57 | ″ | schema:pagination | 340-343 |
58 | ″ | schema:productId | N704029fa36954d9bb043b0508845dd6b |
59 | ″ | ″ | N7f6af8a82cef4791844d0da6702ac427 |
60 | ″ | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1012161152 |
61 | ″ | ″ | https://doi.org/10.1134/s0021364006180135 |
62 | ″ | schema:sdDatePublished | 2022-05-20T07:24 |
63 | ″ | schema:sdLicense | https://scigraph.springernature.com/explorer/license/ |
64 | ″ | schema:sdPublisher | N2dea44d9fe844db7870866307c947eef |
65 | ″ | schema:url | https://doi.org/10.1134/s0021364006180135 |
66 | ″ | sgo:license | sg:explorer/license/ |
67 | ″ | sgo:sdDataset | articles |
68 | ″ | rdf:type | schema:ScholarlyArticle |
69 | N2d78c4937391476181acabd1a791bc4e | rdf:first | sg:person.01125743642.29 |
70 | ″ | rdf:rest | N9c4dfdf4e92644bc9208826de1b13f4f |
71 | N2dea44d9fe844db7870866307c947eef | schema:name | Springer Nature - SN SciGraph project |
72 | ″ | rdf:type | schema:Organization |
73 | N704029fa36954d9bb043b0508845dd6b | schema:name | dimensions_id |
74 | ″ | schema:value | pub.1012161152 |
75 | ″ | rdf:type | schema:PropertyValue |
76 | N7ad0c25a159a4b8ba72a2c62353f587a | schema:volumeNumber | 84 |
77 | ″ | rdf:type | schema:PublicationVolume |
78 | N7c23a496ce8e4ef8bd94ce5bea5c2f31 | schema:issueNumber | 6 |
79 | ″ | rdf:type | schema:PublicationIssue |
80 | N7f6af8a82cef4791844d0da6702ac427 | schema:name | doi |
81 | ″ | schema:value | 10.1134/s0021364006180135 |
82 | ″ | rdf:type | schema:PropertyValue |
83 | N9c4dfdf4e92644bc9208826de1b13f4f | rdf:first | sg:person.0771451125.66 |
84 | ″ | rdf:rest | rdf:nil |
85 | Nc0726eaceff04edb973c233ca95516ae | rdf:first | sg:person.011610151633.09 |
86 | ″ | rdf:rest | Nfb82220a887e4e72adacdada360bd9c7 |
87 | Nfb82220a887e4e72adacdada360bd9c7 | rdf:first | sg:person.012567653177.24 |
88 | ″ | rdf:rest | N2d78c4937391476181acabd1a791bc4e |
89 | anzsrc-for:02 | schema:inDefinedTermSet | anzsrc-for: |
90 | ″ | schema:name | Physical Sciences |
91 | ″ | rdf:type | schema:DefinedTerm |
92 | anzsrc-for:0299 | schema:inDefinedTermSet | anzsrc-for: |
93 | ″ | schema:name | Other Physical Sciences |
94 | ″ | rdf:type | schema:DefinedTerm |
95 | sg:journal.1052174 | schema:issn | 0021-3640 |
96 | ″ | ″ | 1090-6487 |
97 | ″ | schema:name | JETP Letters |
98 | ″ | schema:publisher | Pleiades Publishing |
99 | ″ | rdf:type | schema:Periodical |
100 | sg:person.01125743642.29 | schema:affiliation | grid-institutes:grid.418975.6 |
101 | ″ | schema:familyName | Dorozhkin |
102 | ″ | schema:givenName | P. S. |
103 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01125743642.29 |
104 | ″ | rdf:type | schema:Person |
105 | sg:person.011610151633.09 | schema:affiliation | grid-institutes:grid.418975.6 |
106 | ″ | schema:familyName | Zaitsev |
107 | ″ | schema:givenName | S. V. |
108 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011610151633.09 |
109 | ″ | rdf:type | schema:Person |
110 | sg:person.012567653177.24 | schema:affiliation | grid-institutes:grid.418975.6 |
111 | ″ | schema:familyName | Brichkin |
112 | ″ | schema:givenName | A. S. |
113 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012567653177.24 |
114 | ″ | rdf:type | schema:Person |
115 | sg:person.0771451125.66 | schema:affiliation | grid-institutes:grid.5718.b |
116 | ″ | schema:familyName | Bacher |
117 | ″ | schema:givenName | G. |
118 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0771451125.66 |
119 | ″ | rdf:type | schema:Person |
120 | grid-institutes:grid.418975.6 | schema:alternateName | Institute of Solid State Physics, Russian Academy of Sciences, 142432, Chernogolovka, Moscow region, Russia |
121 | ″ | schema:name | Institute of Solid State Physics, Russian Academy of Sciences, 142432, Chernogolovka, Moscow region, Russia |
122 | ″ | rdf:type | schema:Organization |
123 | grid-institutes:grid.5718.b | schema:alternateName | Lehistuhl Werkstoffe der Elektrotechnik, Universität Duisburg-Essen, D-47057, Duisburg, Germany |
124 | ″ | schema:name | Lehistuhl Werkstoffe der Elektrotechnik, Universität Duisburg-Essen, D-47057, Duisburg, Germany |
125 | ″ | rdf:type | schema:Organization |