Liquid-crystal defects and confinement in Yang-Mills theory View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2006-06

AUTHORS

M. N. Chernodub

ABSTRACT

It has been shown that, in the Landau gauge of the SU(2) Yang-Mills theory, the residual global symmetry supports the existence of topological vortices which resemble disclination defects in nematic liquid crystals and Alice (half-quantum) vortices in superfluid 3He in the A-phase. The theory also possesses half-integer and integer-charged monopoles, which are analogous to the point-like defects in nematic crystal and in liquid helium. We argue that the deconfinement phase transition in the Yang-Mills theory in the Landau gauge is associated with the proliferation of these vortices and/or monopoles. More... »

PAGES

268-272

Identifiers

URI

http://scigraph.springernature.com/pub.10.1134/s0021364006070022

DOI

http://dx.doi.org/10.1134/s0021364006070022

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1030915979


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0204", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Condensed Matter Physics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/02", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Institute for Theoretical and Experimental Physics", 
          "id": "https://www.grid.ac/institutes/grid.21626.31", 
          "name": [
            "Institute of Theoretical and Experimental Physics, 117259, Moscow, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Chernodub", 
        "givenName": "M. N.", 
        "id": "sg:person.010306364071.34", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010306364071.34"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1103/physrevd.55.2298", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005517711"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevd.55.2298", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005517711"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.94.132001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006585993"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.94.132001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006585993"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0370-2693(93)90427-j", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016831903"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0370-2693(93)90427-j", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016831903"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0920-5632(99)85142-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019726683"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0370-1573(86)90014-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026333167"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0370-1573(86)90014-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026333167"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0370-2693(96)00396-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027173283"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0550-3213(82)90190-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035105067"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0550-3213(82)90190-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035105067"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevd.61.054504", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039049445"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevd.61.054504", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039049445"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/15421407308083320", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043050680"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0370-2693(98)01347-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050120564"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevd.10.4262", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060682715"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevd.10.4262", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060682715"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.36.874", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060780460"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.36.874", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060780460"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.70.1650", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060806490"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.70.1650", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060806490"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/revmodphys.46.617", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060838773"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/revmodphys.46.617", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060838773"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/revmodphys.52.617", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060838961"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/revmodphys.52.617", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060838961"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2006-06", 
    "datePublishedReg": "2006-06-01", 
    "description": "It has been shown that, in the Landau gauge of the SU(2) Yang-Mills theory, the residual global symmetry supports the existence of topological vortices which resemble disclination defects in nematic liquid crystals and Alice (half-quantum) vortices in superfluid 3He in the A-phase. The theory also possesses half-integer and integer-charged monopoles, which are analogous to the point-like defects in nematic crystal and in liquid helium. We argue that the deconfinement phase transition in the Yang-Mills theory in the Landau gauge is associated with the proliferation of these vortices and/or monopoles.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1134/s0021364006070022", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1052174", 
        "issn": [
          "0021-3640", 
          "1090-6487"
        ], 
        "name": "JETP Letters", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "7", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "83"
      }
    ], 
    "name": "Liquid-crystal defects and confinement in Yang-Mills theory", 
    "pagination": "268-272", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "9347d3e1785b0fb2373592096a6c775bcaed6c0916658e69c9d5831c3cc9970e"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1134/s0021364006070022"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1030915979"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1134/s0021364006070022", 
      "https://app.dimensions.ai/details/publication/pub.1030915979"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T19:06", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8678_00000500.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1134/S0021364006070022"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1134/s0021364006070022'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1134/s0021364006070022'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1134/s0021364006070022'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1134/s0021364006070022'


 

This table displays all metadata directly associated to this object as RDF triples.

106 TRIPLES      21 PREDICATES      42 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1134/s0021364006070022 schema:about anzsrc-for:02
2 anzsrc-for:0204
3 schema:author N193a583953aa46d5b9c2ad8393531a04
4 schema:citation https://doi.org/10.1016/0370-1573(86)90014-1
5 https://doi.org/10.1016/0370-2693(93)90427-j
6 https://doi.org/10.1016/0370-2693(96)00396-6
7 https://doi.org/10.1016/0550-3213(82)90190-0
8 https://doi.org/10.1016/s0370-2693(98)01347-1
9 https://doi.org/10.1016/s0920-5632(99)85142-1
10 https://doi.org/10.1080/15421407308083320
11 https://doi.org/10.1103/physrevd.10.4262
12 https://doi.org/10.1103/physrevd.55.2298
13 https://doi.org/10.1103/physrevd.61.054504
14 https://doi.org/10.1103/physrevlett.36.874
15 https://doi.org/10.1103/physrevlett.70.1650
16 https://doi.org/10.1103/physrevlett.94.132001
17 https://doi.org/10.1103/revmodphys.46.617
18 https://doi.org/10.1103/revmodphys.52.617
19 schema:datePublished 2006-06
20 schema:datePublishedReg 2006-06-01
21 schema:description It has been shown that, in the Landau gauge of the SU(2) Yang-Mills theory, the residual global symmetry supports the existence of topological vortices which resemble disclination defects in nematic liquid crystals and Alice (half-quantum) vortices in superfluid 3He in the A-phase. The theory also possesses half-integer and integer-charged monopoles, which are analogous to the point-like defects in nematic crystal and in liquid helium. We argue that the deconfinement phase transition in the Yang-Mills theory in the Landau gauge is associated with the proliferation of these vortices and/or monopoles.
22 schema:genre research_article
23 schema:inLanguage en
24 schema:isAccessibleForFree true
25 schema:isPartOf Nbeab430edd5e4eb8a3e5b1d1e1acd815
26 Nfb1094de9e1b4e519591951888d6118c
27 sg:journal.1052174
28 schema:name Liquid-crystal defects and confinement in Yang-Mills theory
29 schema:pagination 268-272
30 schema:productId N722bc600159740cd8533a2a66c3ba888
31 N7c7c9692d2ae48acbecb963132d268e5
32 Ne9221b66d56f4b0f86700cc285b0e655
33 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030915979
34 https://doi.org/10.1134/s0021364006070022
35 schema:sdDatePublished 2019-04-10T19:06
36 schema:sdLicense https://scigraph.springernature.com/explorer/license/
37 schema:sdPublisher Na9aaa2e9574243a1bc90bccfc412c9b8
38 schema:url http://link.springer.com/10.1134/S0021364006070022
39 sgo:license sg:explorer/license/
40 sgo:sdDataset articles
41 rdf:type schema:ScholarlyArticle
42 N193a583953aa46d5b9c2ad8393531a04 rdf:first sg:person.010306364071.34
43 rdf:rest rdf:nil
44 N722bc600159740cd8533a2a66c3ba888 schema:name readcube_id
45 schema:value 9347d3e1785b0fb2373592096a6c775bcaed6c0916658e69c9d5831c3cc9970e
46 rdf:type schema:PropertyValue
47 N7c7c9692d2ae48acbecb963132d268e5 schema:name doi
48 schema:value 10.1134/s0021364006070022
49 rdf:type schema:PropertyValue
50 Na9aaa2e9574243a1bc90bccfc412c9b8 schema:name Springer Nature - SN SciGraph project
51 rdf:type schema:Organization
52 Nbeab430edd5e4eb8a3e5b1d1e1acd815 schema:volumeNumber 83
53 rdf:type schema:PublicationVolume
54 Ne9221b66d56f4b0f86700cc285b0e655 schema:name dimensions_id
55 schema:value pub.1030915979
56 rdf:type schema:PropertyValue
57 Nfb1094de9e1b4e519591951888d6118c schema:issueNumber 7
58 rdf:type schema:PublicationIssue
59 anzsrc-for:02 schema:inDefinedTermSet anzsrc-for:
60 schema:name Physical Sciences
61 rdf:type schema:DefinedTerm
62 anzsrc-for:0204 schema:inDefinedTermSet anzsrc-for:
63 schema:name Condensed Matter Physics
64 rdf:type schema:DefinedTerm
65 sg:journal.1052174 schema:issn 0021-3640
66 1090-6487
67 schema:name JETP Letters
68 rdf:type schema:Periodical
69 sg:person.010306364071.34 schema:affiliation https://www.grid.ac/institutes/grid.21626.31
70 schema:familyName Chernodub
71 schema:givenName M. N.
72 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010306364071.34
73 rdf:type schema:Person
74 https://doi.org/10.1016/0370-1573(86)90014-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026333167
75 rdf:type schema:CreativeWork
76 https://doi.org/10.1016/0370-2693(93)90427-j schema:sameAs https://app.dimensions.ai/details/publication/pub.1016831903
77 rdf:type schema:CreativeWork
78 https://doi.org/10.1016/0370-2693(96)00396-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027173283
79 rdf:type schema:CreativeWork
80 https://doi.org/10.1016/0550-3213(82)90190-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035105067
81 rdf:type schema:CreativeWork
82 https://doi.org/10.1016/s0370-2693(98)01347-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050120564
83 rdf:type schema:CreativeWork
84 https://doi.org/10.1016/s0920-5632(99)85142-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019726683
85 rdf:type schema:CreativeWork
86 https://doi.org/10.1080/15421407308083320 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043050680
87 rdf:type schema:CreativeWork
88 https://doi.org/10.1103/physrevd.10.4262 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060682715
89 rdf:type schema:CreativeWork
90 https://doi.org/10.1103/physrevd.55.2298 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005517711
91 rdf:type schema:CreativeWork
92 https://doi.org/10.1103/physrevd.61.054504 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039049445
93 rdf:type schema:CreativeWork
94 https://doi.org/10.1103/physrevlett.36.874 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060780460
95 rdf:type schema:CreativeWork
96 https://doi.org/10.1103/physrevlett.70.1650 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060806490
97 rdf:type schema:CreativeWork
98 https://doi.org/10.1103/physrevlett.94.132001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006585993
99 rdf:type schema:CreativeWork
100 https://doi.org/10.1103/revmodphys.46.617 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060838773
101 rdf:type schema:CreativeWork
102 https://doi.org/10.1103/revmodphys.52.617 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060838961
103 rdf:type schema:CreativeWork
104 https://www.grid.ac/institutes/grid.21626.31 schema:alternateName Institute for Theoretical and Experimental Physics
105 schema:name Institute of Theoretical and Experimental Physics, 117259, Moscow, Russia
106 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...