A compact vacuum UV excilamp on argon dimers View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2012-07-25

AUTHORS

M. V. Erofeev, V. S. Skakun, V. F. Tarasenko, D. V. Shitts

ABSTRACT

The energy and spectral characteristics of the argon dimer emission with the maximum at a wave-length of ∼126 nm under excitation by a pulse-periodic discharge in a gas flow with pressures higher than the atmospheric pressure are studied. A compact excilamp has been designed for obtaining radiation in the vacuum ultraviolet spectrum region. The minimal argon flow velocities are determined, at which cooling is effected by convective gas ejection from the discharge region. This allows one to form a diffusion discharge with a stable radiation power density. It is shown that, when the flow velocity is 0.5 m3/h, the radiation power density of an Ar2* molecule is >100 μW/cm2 behind a LiF window with ∼10% transmission at a wavelength of 126 nm. It is shown that the use of a windowless design and an increase in the gas flow velocity allows an increase in the radiation power density up to 10 mW/cm2. More... »

PAGES

482-485

References to SciGraph publications

  • 2006-07. A windowless VUV excilamp in TECHNICAL PHYSICS LETTERS
  • 2006-10. Afterglow emission from xenon, krypton, and argon dimers in nanosecond volume discharge at elevated pressures in TECHNICAL PHYSICS LETTERS
  • 2008-09-26. A system of excilamps on xenon dimers for a flow photoreactor in INSTRUMENTS AND EXPERIMENTAL TECHNIQUES
  • 2007-03. Removal of Carbon Contamination on Si Wafers with an Excimer Lamp in METALLURGICAL AND MATERIALS TRANSACTIONS A
  • 2006-04. New vacuum ultraviolet lamps for gas analysis in TECHNICAL PHYSICS
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1134/s0020441212030116

    DOI

    http://dx.doi.org/10.1134/s0020441212030116

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1047566569


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Engineering", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0915", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Interdisciplinary Engineering", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Institute of High-Current Electronics, Siberian Branch, Russian Academy of Sciences, pr. Akademicheskii 2/3, 634055, Tomsk, Russia", 
              "id": "http://www.grid.ac/institutes/grid.465280.d", 
              "name": [
                "Institute of High-Current Electronics, Siberian Branch, Russian Academy of Sciences, pr. Akademicheskii 2/3, 634055, Tomsk, Russia"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Erofeev", 
            "givenName": "M. V.", 
            "id": "sg:person.011621550151.39", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011621550151.39"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Institute of High-Current Electronics, Siberian Branch, Russian Academy of Sciences, pr. Akademicheskii 2/3, 634055, Tomsk, Russia", 
              "id": "http://www.grid.ac/institutes/grid.465280.d", 
              "name": [
                "Institute of High-Current Electronics, Siberian Branch, Russian Academy of Sciences, pr. Akademicheskii 2/3, 634055, Tomsk, Russia"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Skakun", 
            "givenName": "V. S.", 
            "id": "sg:person.015552353655.29", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015552353655.29"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Institute of High-Current Electronics, Siberian Branch, Russian Academy of Sciences, pr. Akademicheskii 2/3, 634055, Tomsk, Russia", 
              "id": "http://www.grid.ac/institutes/grid.465280.d", 
              "name": [
                "Institute of High-Current Electronics, Siberian Branch, Russian Academy of Sciences, pr. Akademicheskii 2/3, 634055, Tomsk, Russia"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Tarasenko", 
            "givenName": "V. F.", 
            "id": "sg:person.010404324635.66", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010404324635.66"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Institute of High-Current Electronics, Siberian Branch, Russian Academy of Sciences, pr. Akademicheskii 2/3, 634055, Tomsk, Russia", 
              "id": "http://www.grid.ac/institutes/grid.465280.d", 
              "name": [
                "Institute of High-Current Electronics, Siberian Branch, Russian Academy of Sciences, pr. Akademicheskii 2/3, 634055, Tomsk, Russia"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Shitts", 
            "givenName": "D. V.", 
            "id": "sg:person.07431226551.22", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07431226551.22"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1134/s1063784206040244", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1021226332", 
              "https://doi.org/10.1134/s1063784206040244"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11661-007-9104-y", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1028597008", 
              "https://doi.org/10.1007/s11661-007-9104-y"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1134/s1063785006100099", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1025472808", 
              "https://doi.org/10.1134/s1063785006100099"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1134/s1063785006070121", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1016318381", 
              "https://doi.org/10.1134/s1063785006070121"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1134/s0020441208050199", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1033007096", 
              "https://doi.org/10.1134/s0020441208050199"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2012-07-25", 
        "datePublishedReg": "2012-07-25", 
        "description": "The energy and spectral characteristics of the argon dimer emission with the maximum at a wave-length of \u223c126 nm under excitation by a pulse-periodic discharge in a gas flow with pressures higher than the atmospheric pressure are studied. A compact excilamp has been designed for obtaining radiation in the vacuum ultraviolet spectrum region. The minimal argon flow velocities are determined, at which cooling is effected by convective gas ejection from the discharge region. This allows one to form a diffusion discharge with a stable radiation power density. It is shown that, when the flow velocity is 0.5 m3/h, the radiation power density of an Ar2* molecule is >100 \u03bcW/cm2 behind a LiF window with \u223c10% transmission at a wavelength of 126 nm. It is shown that the use of a windowless design and an increase in the gas flow velocity allows an increase in the radiation power density up to 10 mW/cm2.", 
        "genre": "article", 
        "id": "sg:pub.10.1134/s0020441212030116", 
        "inLanguage": "en", 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1135921", 
            "issn": [
              "0020-4412", 
              "1608-3180"
            ], 
            "name": "Instruments and Experimental Techniques", 
            "publisher": "Pleiades Publishing", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "4", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "55"
          }
        ], 
        "keywords": [
          "radiation power density", 
          "pulse-periodic discharge", 
          "ultraviolet spectrum region", 
          "gas ejection", 
          "windowless design", 
          "argon dimers", 
          "discharge region", 
          "power density", 
          "LiF window", 
          "mW/cm2", 
          "spectrum region", 
          "dimer emission", 
          "flow velocity", 
          "gas flow velocity", 
          "m3/h", 
          "excilamp", 
          "atmospheric pressure", 
          "spectral characteristics", 
          "cm2", 
          "gas flow", 
          "Ar2", 
          "density", 
          "excitation", 
          "wavelength", 
          "ejection", 
          "radiation", 
          "emission", 
          "energy", 
          "velocity", 
          "discharge", 
          "cooling", 
          "region", 
          "window", 
          "molecules", 
          "flow", 
          "pressure", 
          "maximum", 
          "dimer", 
          "design", 
          "transmission", 
          "characteristics", 
          "increase", 
          "use", 
          "argon dimer emission", 
          "compact excilamp", 
          "vacuum ultraviolet spectrum region", 
          "minimal argon flow velocities", 
          "argon flow velocities", 
          "convective gas ejection", 
          "diffusion discharge", 
          "stable radiation power density", 
          "compact vacuum UV excilamp", 
          "vacuum UV excilamp", 
          "UV excilamp"
        ], 
        "name": "A compact vacuum UV excilamp on argon dimers", 
        "pagination": "482-485", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1047566569"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1134/s0020441212030116"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1134/s0020441212030116", 
          "https://app.dimensions.ai/details/publication/pub.1047566569"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2022-01-01T18:27", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20220101/entities/gbq_results/article/article_576.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1134/s0020441212030116"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1134/s0020441212030116'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1134/s0020441212030116'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1134/s0020441212030116'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1134/s0020441212030116'


     

    This table displays all metadata directly associated to this object as RDF triples.

    153 TRIPLES      22 PREDICATES      84 URIs      71 LITERALS      6 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1134/s0020441212030116 schema:about anzsrc-for:09
    2 anzsrc-for:0915
    3 schema:author N17f1e886a0aa4e04b71e095cac058c5e
    4 schema:citation sg:pub.10.1007/s11661-007-9104-y
    5 sg:pub.10.1134/s0020441208050199
    6 sg:pub.10.1134/s1063784206040244
    7 sg:pub.10.1134/s1063785006070121
    8 sg:pub.10.1134/s1063785006100099
    9 schema:datePublished 2012-07-25
    10 schema:datePublishedReg 2012-07-25
    11 schema:description The energy and spectral characteristics of the argon dimer emission with the maximum at a wave-length of ∼126 nm under excitation by a pulse-periodic discharge in a gas flow with pressures higher than the atmospheric pressure are studied. A compact excilamp has been designed for obtaining radiation in the vacuum ultraviolet spectrum region. The minimal argon flow velocities are determined, at which cooling is effected by convective gas ejection from the discharge region. This allows one to form a diffusion discharge with a stable radiation power density. It is shown that, when the flow velocity is 0.5 m3/h, the radiation power density of an Ar2* molecule is >100 μW/cm2 behind a LiF window with ∼10% transmission at a wavelength of 126 nm. It is shown that the use of a windowless design and an increase in the gas flow velocity allows an increase in the radiation power density up to 10 mW/cm2.
    12 schema:genre article
    13 schema:inLanguage en
    14 schema:isAccessibleForFree false
    15 schema:isPartOf N3192f8b11f4c40d7b066da3490d7998e
    16 Ne4fdee39476d48359ce8db2fcb7b0c7f
    17 sg:journal.1135921
    18 schema:keywords Ar2
    19 LiF window
    20 UV excilamp
    21 argon dimer emission
    22 argon dimers
    23 argon flow velocities
    24 atmospheric pressure
    25 characteristics
    26 cm2
    27 compact excilamp
    28 compact vacuum UV excilamp
    29 convective gas ejection
    30 cooling
    31 density
    32 design
    33 diffusion discharge
    34 dimer
    35 dimer emission
    36 discharge
    37 discharge region
    38 ejection
    39 emission
    40 energy
    41 excilamp
    42 excitation
    43 flow
    44 flow velocity
    45 gas ejection
    46 gas flow
    47 gas flow velocity
    48 increase
    49 m3/h
    50 mW/cm2
    51 maximum
    52 minimal argon flow velocities
    53 molecules
    54 power density
    55 pressure
    56 pulse-periodic discharge
    57 radiation
    58 radiation power density
    59 region
    60 spectral characteristics
    61 spectrum region
    62 stable radiation power density
    63 transmission
    64 ultraviolet spectrum region
    65 use
    66 vacuum UV excilamp
    67 vacuum ultraviolet spectrum region
    68 velocity
    69 wavelength
    70 window
    71 windowless design
    72 schema:name A compact vacuum UV excilamp on argon dimers
    73 schema:pagination 482-485
    74 schema:productId N6ec8f0f8fba1470da3ac7889052d1dd6
    75 Naaa22261728d4b2b9b6509f6e7629c77
    76 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047566569
    77 https://doi.org/10.1134/s0020441212030116
    78 schema:sdDatePublished 2022-01-01T18:27
    79 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    80 schema:sdPublisher N5a050c555b994b45a4e1b4704ee30515
    81 schema:url https://doi.org/10.1134/s0020441212030116
    82 sgo:license sg:explorer/license/
    83 sgo:sdDataset articles
    84 rdf:type schema:ScholarlyArticle
    85 N17f1e886a0aa4e04b71e095cac058c5e rdf:first sg:person.011621550151.39
    86 rdf:rest Nee9645760971422c9db183bdb76f023b
    87 N1ebc57433af84787a41d293fb7d50294 rdf:first sg:person.07431226551.22
    88 rdf:rest rdf:nil
    89 N3192f8b11f4c40d7b066da3490d7998e schema:volumeNumber 55
    90 rdf:type schema:PublicationVolume
    91 N5a050c555b994b45a4e1b4704ee30515 schema:name Springer Nature - SN SciGraph project
    92 rdf:type schema:Organization
    93 N6ec8f0f8fba1470da3ac7889052d1dd6 schema:name doi
    94 schema:value 10.1134/s0020441212030116
    95 rdf:type schema:PropertyValue
    96 N8cd2fd8414304a6384dbaadae3fad147 rdf:first sg:person.010404324635.66
    97 rdf:rest N1ebc57433af84787a41d293fb7d50294
    98 Naaa22261728d4b2b9b6509f6e7629c77 schema:name dimensions_id
    99 schema:value pub.1047566569
    100 rdf:type schema:PropertyValue
    101 Ne4fdee39476d48359ce8db2fcb7b0c7f schema:issueNumber 4
    102 rdf:type schema:PublicationIssue
    103 Nee9645760971422c9db183bdb76f023b rdf:first sg:person.015552353655.29
    104 rdf:rest N8cd2fd8414304a6384dbaadae3fad147
    105 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
    106 schema:name Engineering
    107 rdf:type schema:DefinedTerm
    108 anzsrc-for:0915 schema:inDefinedTermSet anzsrc-for:
    109 schema:name Interdisciplinary Engineering
    110 rdf:type schema:DefinedTerm
    111 sg:journal.1135921 schema:issn 0020-4412
    112 1608-3180
    113 schema:name Instruments and Experimental Techniques
    114 schema:publisher Pleiades Publishing
    115 rdf:type schema:Periodical
    116 sg:person.010404324635.66 schema:affiliation grid-institutes:grid.465280.d
    117 schema:familyName Tarasenko
    118 schema:givenName V. F.
    119 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010404324635.66
    120 rdf:type schema:Person
    121 sg:person.011621550151.39 schema:affiliation grid-institutes:grid.465280.d
    122 schema:familyName Erofeev
    123 schema:givenName M. V.
    124 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011621550151.39
    125 rdf:type schema:Person
    126 sg:person.015552353655.29 schema:affiliation grid-institutes:grid.465280.d
    127 schema:familyName Skakun
    128 schema:givenName V. S.
    129 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015552353655.29
    130 rdf:type schema:Person
    131 sg:person.07431226551.22 schema:affiliation grid-institutes:grid.465280.d
    132 schema:familyName Shitts
    133 schema:givenName D. V.
    134 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07431226551.22
    135 rdf:type schema:Person
    136 sg:pub.10.1007/s11661-007-9104-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1028597008
    137 https://doi.org/10.1007/s11661-007-9104-y
    138 rdf:type schema:CreativeWork
    139 sg:pub.10.1134/s0020441208050199 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033007096
    140 https://doi.org/10.1134/s0020441208050199
    141 rdf:type schema:CreativeWork
    142 sg:pub.10.1134/s1063784206040244 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021226332
    143 https://doi.org/10.1134/s1063784206040244
    144 rdf:type schema:CreativeWork
    145 sg:pub.10.1134/s1063785006070121 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016318381
    146 https://doi.org/10.1134/s1063785006070121
    147 rdf:type schema:CreativeWork
    148 sg:pub.10.1134/s1063785006100099 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025472808
    149 https://doi.org/10.1134/s1063785006100099
    150 rdf:type schema:CreativeWork
    151 grid-institutes:grid.465280.d schema:alternateName Institute of High-Current Electronics, Siberian Branch, Russian Academy of Sciences, pr. Akademicheskii 2/3, 634055, Tomsk, Russia
    152 schema:name Institute of High-Current Electronics, Siberian Branch, Russian Academy of Sciences, pr. Akademicheskii 2/3, 634055, Tomsk, Russia
    153 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...