Growth of Titanium Oxide Nanostructures on γ-Аl2О3 by Atomic Layer Deposition View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2020-12-14

AUTHORS

A. A. Malkov, Yu. A. Kukushkina, E. A. Sosnov, A. A. Malygin

ABSTRACT

—This paper presents results on control over the surface composition, surface structure, and pore texture of core/shell materials, as exemplified by the growth of conformal titanium oxide nanocoatings on γ‑Аl2О3 by atomic layer deposition via sequential and alternating exposure of the alumina to TiCl4 and H2O vapor. The alumina surface and growing titanium oxide layer are shown to influence the characteristics of the forming two-phase material. Increasing the amount of titanium via an increase in the number of deposition cycles leads to a systematic decrease in specific surface area, pore volume, and pore size, which points to conformal pore filling in the starting matrix by a titanium oxide layer. The composition and structure of the titanium oxide coating are influenced by its thickness and the nature of the starting matrix. The coordination state of the titanium oxide in monolayer structures is characteristic of the titanium oxide polyhedra in aluminum titanate. As the distance from the top monolayer to the surface of the matrix (coating thickness) increases, an X-ray amorphous layer is formed in which the oxygen coordination environment of the titanium is similar to that in an anatase-like phase of titanium dioxide. More... »

PAGES

1234-1241

Identifiers

URI

http://scigraph.springernature.com/pub.10.1134/s0020168520120122

DOI

http://dx.doi.org/10.1134/s0020168520120122

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1133497294


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/03", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Chemical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0306", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Chemistry (incl. Structural)", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0912", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Materials Engineering", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "St. Petersburg State Institute of Technology (Technical University), 190013, St. Petersburg, Russia", 
          "id": "http://www.grid.ac/institutes/grid.437869.7", 
          "name": [
            "St. Petersburg State Institute of Technology (Technical University), 190013, St. Petersburg, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Malkov", 
        "givenName": "A. A.", 
        "id": "sg:person.013154132146.75", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013154132146.75"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Ioffe Physicotechnical Institute, Russian Academy of Sciences, 194021, St. Petersburg, Russia", 
          "id": "http://www.grid.ac/institutes/grid.423485.c", 
          "name": [
            "Ioffe Physicotechnical Institute, Russian Academy of Sciences, 194021, St. Petersburg, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kukushkina", 
        "givenName": "Yu. A.", 
        "id": "sg:person.014416516426.81", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014416516426.81"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "St. Petersburg State Institute of Technology (Technical University), 190013, St. Petersburg, Russia", 
          "id": "http://www.grid.ac/institutes/grid.437869.7", 
          "name": [
            "St. Petersburg State Institute of Technology (Technical University), 190013, St. Petersburg, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Sosnov", 
        "givenName": "E. A.", 
        "id": "sg:person.07622160600.35", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07622160600.35"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "St. Petersburg State Institute of Technology (Technical University), 190013, St. Petersburg, Russia", 
          "id": "http://www.grid.ac/institutes/grid.437869.7", 
          "name": [
            "St. Petersburg State Institute of Technology (Technical University), 190013, St. Petersburg, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Malygin", 
        "givenName": "A. A.", 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1134/s1070427210090028", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048770347", 
          "https://doi.org/10.1134/s1070427210090028"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1134/s002016851811016x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1109925929", 
          "https://doi.org/10.1134/s002016851811016x"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11172-017-1971-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1101529626", 
          "https://doi.org/10.1007/s11172-017-1971-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1134/s1070363211010075", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025511107", 
          "https://doi.org/10.1134/s1070363211010075"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00274628", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051130793", 
          "https://doi.org/10.1007/bf00274628"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1134/s0018143908070242", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027372650", 
          "https://doi.org/10.1134/s0018143908070242"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1134/s0036024409040219", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023597001", 
          "https://doi.org/10.1134/s0036024409040219"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2020-12-14", 
    "datePublishedReg": "2020-12-14", 
    "description": "Abstract\u2014This paper presents results on control over the surface composition, surface structure, and pore texture of core/shell materials, as exemplified by the growth of conformal titanium oxide nanocoatings on \u03b3\u2011\u0410l2\u041e3 by atomic layer deposition via sequential and alternating exposure of the alumina to TiCl4 and H2O vapor. The alumina surface and growing titanium oxide layer are shown to influence the characteristics of the forming two-phase material. Increasing the amount of titanium via an increase in the number of deposition cycles leads to a systematic decrease in specific surface area, pore volume, and pore size, which points to conformal pore filling in the starting matrix by a titanium oxide layer. The composition and structure of the titanium oxide coating are influenced by its thickness and the nature of the starting matrix. The coordination state of the titanium oxide in monolayer structures is characteristic of the titanium oxide polyhedra in aluminum titanate. As the distance from the top monolayer to the surface of the matrix (coating thickness) increases, an X-ray amorphous layer is formed in which the oxygen coordination environment of the titanium is similar to that in an anatase-like phase of titanium dioxide.", 
    "genre": "article", 
    "id": "sg:pub.10.1134/s0020168520120122", 
    "inLanguage": "en", 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1297638", 
        "issn": [
          "0020-1685", 
          "1608-3172"
        ], 
        "name": "Inorganic Materials", 
        "publisher": "Pleiades Publishing", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "12", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "56"
      }
    ], 
    "keywords": [
      "titanium oxide layer", 
      "atomic layer deposition", 
      "oxide layer", 
      "layer deposition", 
      "titanium oxide coatings", 
      "two-phase materials", 
      "ray amorphous layer", 
      "titanium oxide nanostructures", 
      "amount of titanium", 
      "specific surface area", 
      "core/shell materials", 
      "oxide coatings", 
      "aluminum titanate", 
      "oxide nanocoatings", 
      "titanium oxide", 
      "amorphous layer", 
      "oxide nanostructures", 
      "pore size", 
      "deposition cycles", 
      "pore volume", 
      "pore filling", 
      "titanium dioxide", 
      "pore texture", 
      "starting matrix", 
      "shell material", 
      "alumina surface", 
      "oxide polyhedra", 
      "surface area", 
      "H2O vapor", 
      "surface structure", 
      "surface composition", 
      "matrix increases", 
      "titanium", 
      "layer", 
      "oxygen coordination environment", 
      "surface", 
      "materials", 
      "deposition", 
      "nanocoatings", 
      "coatings", 
      "top monolayer", 
      "titanate", 
      "alumina", 
      "monolayer structure", 
      "matrix", 
      "nanostructures", 
      "structure", 
      "vapor", 
      "thickness", 
      "oxide", 
      "coordination environment", 
      "coordination state", 
      "dioxide", 
      "TiCl4", 
      "composition", 
      "systematic decrease", 
      "texture", 
      "phase", 
      "filling", 
      "characteristics", 
      "increase", 
      "size", 
      "cycle", 
      "amount", 
      "volume", 
      "monolayers", 
      "results", 
      "distance", 
      "environment", 
      "growth", 
      "control", 
      "area", 
      "polyhedra", 
      "decrease", 
      "Abstract", 
      "state", 
      "nature", 
      "number", 
      "exposure", 
      "paper", 
      "conformal titanium oxide nanocoatings", 
      "titanium oxide nanocoatings", 
      "titanium oxide polyhedra", 
      "anatase-like phase"
    ], 
    "name": "Growth of Titanium Oxide Nanostructures on \u03b3-\u0410l2\u041e3 by Atomic Layer Deposition", 
    "pagination": "1234-1241", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1133497294"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1134/s0020168520120122"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1134/s0020168520120122", 
      "https://app.dimensions.ai/details/publication/pub.1133497294"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-01-01T18:57", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220101/entities/gbq_results/article/article_845.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1134/s0020168520120122"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1134/s0020168520120122'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1134/s0020168520120122'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1134/s0020168520120122'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1134/s0020168520120122'


 

This table displays all metadata directly associated to this object as RDF triples.

201 TRIPLES      22 PREDICATES      118 URIs      101 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1134/s0020168520120122 schema:about anzsrc-for:03
2 anzsrc-for:0306
3 anzsrc-for:09
4 anzsrc-for:0912
5 schema:author Nf8a7e358bdb5495d8609f5588a3b9c2e
6 schema:citation sg:pub.10.1007/bf00274628
7 sg:pub.10.1007/s11172-017-1971-9
8 sg:pub.10.1134/s0018143908070242
9 sg:pub.10.1134/s002016851811016x
10 sg:pub.10.1134/s0036024409040219
11 sg:pub.10.1134/s1070363211010075
12 sg:pub.10.1134/s1070427210090028
13 schema:datePublished 2020-12-14
14 schema:datePublishedReg 2020-12-14
15 schema:description Abstract—This paper presents results on control over the surface composition, surface structure, and pore texture of core/shell materials, as exemplified by the growth of conformal titanium oxide nanocoatings on γ‑Аl2О3 by atomic layer deposition via sequential and alternating exposure of the alumina to TiCl4 and H2O vapor. The alumina surface and growing titanium oxide layer are shown to influence the characteristics of the forming two-phase material. Increasing the amount of titanium via an increase in the number of deposition cycles leads to a systematic decrease in specific surface area, pore volume, and pore size, which points to conformal pore filling in the starting matrix by a titanium oxide layer. The composition and structure of the titanium oxide coating are influenced by its thickness and the nature of the starting matrix. The coordination state of the titanium oxide in monolayer structures is characteristic of the titanium oxide polyhedra in aluminum titanate. As the distance from the top monolayer to the surface of the matrix (coating thickness) increases, an X-ray amorphous layer is formed in which the oxygen coordination environment of the titanium is similar to that in an anatase-like phase of titanium dioxide.
16 schema:genre article
17 schema:inLanguage en
18 schema:isAccessibleForFree false
19 schema:isPartOf Na456f7468a794bea83b07c497ce744aa
20 Nc44ea2de590748bda3984638080130ab
21 sg:journal.1297638
22 schema:keywords Abstract
23 H2O vapor
24 TiCl4
25 alumina
26 alumina surface
27 aluminum titanate
28 amorphous layer
29 amount
30 amount of titanium
31 anatase-like phase
32 area
33 atomic layer deposition
34 characteristics
35 coatings
36 composition
37 conformal titanium oxide nanocoatings
38 control
39 coordination environment
40 coordination state
41 core/shell materials
42 cycle
43 decrease
44 deposition
45 deposition cycles
46 dioxide
47 distance
48 environment
49 exposure
50 filling
51 growth
52 increase
53 layer
54 layer deposition
55 materials
56 matrix
57 matrix increases
58 monolayer structure
59 monolayers
60 nanocoatings
61 nanostructures
62 nature
63 number
64 oxide
65 oxide coatings
66 oxide layer
67 oxide nanocoatings
68 oxide nanostructures
69 oxide polyhedra
70 oxygen coordination environment
71 paper
72 phase
73 polyhedra
74 pore filling
75 pore size
76 pore texture
77 pore volume
78 ray amorphous layer
79 results
80 shell material
81 size
82 specific surface area
83 starting matrix
84 state
85 structure
86 surface
87 surface area
88 surface composition
89 surface structure
90 systematic decrease
91 texture
92 thickness
93 titanate
94 titanium
95 titanium dioxide
96 titanium oxide
97 titanium oxide coatings
98 titanium oxide layer
99 titanium oxide nanocoatings
100 titanium oxide nanostructures
101 titanium oxide polyhedra
102 top monolayer
103 two-phase materials
104 vapor
105 volume
106 schema:name Growth of Titanium Oxide Nanostructures on γ-Аl2О3 by Atomic Layer Deposition
107 schema:pagination 1234-1241
108 schema:productId N2828851ec4c94bb98f0be692ba28b422
109 Nd03e63738c994c9ba920256fc54763bd
110 schema:sameAs https://app.dimensions.ai/details/publication/pub.1133497294
111 https://doi.org/10.1134/s0020168520120122
112 schema:sdDatePublished 2022-01-01T18:57
113 schema:sdLicense https://scigraph.springernature.com/explorer/license/
114 schema:sdPublisher N7449904bfe7a4afab8163cd2f805b6b8
115 schema:url https://doi.org/10.1134/s0020168520120122
116 sgo:license sg:explorer/license/
117 sgo:sdDataset articles
118 rdf:type schema:ScholarlyArticle
119 N2828851ec4c94bb98f0be692ba28b422 schema:name doi
120 schema:value 10.1134/s0020168520120122
121 rdf:type schema:PropertyValue
122 N558d58990926428d86cfea8fc08ed5e6 rdf:first sg:person.014416516426.81
123 rdf:rest N57e4ec6655b844b2907cdabc7f1ad26d
124 N57e4ec6655b844b2907cdabc7f1ad26d rdf:first sg:person.07622160600.35
125 rdf:rest Nf72cae16cc0245a5bcea6ada1071daff
126 N7449904bfe7a4afab8163cd2f805b6b8 schema:name Springer Nature - SN SciGraph project
127 rdf:type schema:Organization
128 N82de21c3991a4cc791f77e8410c07651 schema:affiliation grid-institutes:grid.437869.7
129 schema:familyName Malygin
130 schema:givenName A. A.
131 rdf:type schema:Person
132 Na456f7468a794bea83b07c497ce744aa schema:volumeNumber 56
133 rdf:type schema:PublicationVolume
134 Nc44ea2de590748bda3984638080130ab schema:issueNumber 12
135 rdf:type schema:PublicationIssue
136 Nd03e63738c994c9ba920256fc54763bd schema:name dimensions_id
137 schema:value pub.1133497294
138 rdf:type schema:PropertyValue
139 Nf72cae16cc0245a5bcea6ada1071daff rdf:first N82de21c3991a4cc791f77e8410c07651
140 rdf:rest rdf:nil
141 Nf8a7e358bdb5495d8609f5588a3b9c2e rdf:first sg:person.013154132146.75
142 rdf:rest N558d58990926428d86cfea8fc08ed5e6
143 anzsrc-for:03 schema:inDefinedTermSet anzsrc-for:
144 schema:name Chemical Sciences
145 rdf:type schema:DefinedTerm
146 anzsrc-for:0306 schema:inDefinedTermSet anzsrc-for:
147 schema:name Physical Chemistry (incl. Structural)
148 rdf:type schema:DefinedTerm
149 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
150 schema:name Engineering
151 rdf:type schema:DefinedTerm
152 anzsrc-for:0912 schema:inDefinedTermSet anzsrc-for:
153 schema:name Materials Engineering
154 rdf:type schema:DefinedTerm
155 sg:journal.1297638 schema:issn 0020-1685
156 1608-3172
157 schema:name Inorganic Materials
158 schema:publisher Pleiades Publishing
159 rdf:type schema:Periodical
160 sg:person.013154132146.75 schema:affiliation grid-institutes:grid.437869.7
161 schema:familyName Malkov
162 schema:givenName A. A.
163 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013154132146.75
164 rdf:type schema:Person
165 sg:person.014416516426.81 schema:affiliation grid-institutes:grid.423485.c
166 schema:familyName Kukushkina
167 schema:givenName Yu. A.
168 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014416516426.81
169 rdf:type schema:Person
170 sg:person.07622160600.35 schema:affiliation grid-institutes:grid.437869.7
171 schema:familyName Sosnov
172 schema:givenName E. A.
173 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07622160600.35
174 rdf:type schema:Person
175 sg:pub.10.1007/bf00274628 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051130793
176 https://doi.org/10.1007/bf00274628
177 rdf:type schema:CreativeWork
178 sg:pub.10.1007/s11172-017-1971-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1101529626
179 https://doi.org/10.1007/s11172-017-1971-9
180 rdf:type schema:CreativeWork
181 sg:pub.10.1134/s0018143908070242 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027372650
182 https://doi.org/10.1134/s0018143908070242
183 rdf:type schema:CreativeWork
184 sg:pub.10.1134/s002016851811016x schema:sameAs https://app.dimensions.ai/details/publication/pub.1109925929
185 https://doi.org/10.1134/s002016851811016x
186 rdf:type schema:CreativeWork
187 sg:pub.10.1134/s0036024409040219 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023597001
188 https://doi.org/10.1134/s0036024409040219
189 rdf:type schema:CreativeWork
190 sg:pub.10.1134/s1070363211010075 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025511107
191 https://doi.org/10.1134/s1070363211010075
192 rdf:type schema:CreativeWork
193 sg:pub.10.1134/s1070427210090028 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048770347
194 https://doi.org/10.1134/s1070427210090028
195 rdf:type schema:CreativeWork
196 grid-institutes:grid.423485.c schema:alternateName Ioffe Physicotechnical Institute, Russian Academy of Sciences, 194021, St. Petersburg, Russia
197 schema:name Ioffe Physicotechnical Institute, Russian Academy of Sciences, 194021, St. Petersburg, Russia
198 rdf:type schema:Organization
199 grid-institutes:grid.437869.7 schema:alternateName St. Petersburg State Institute of Technology (Technical University), 190013, St. Petersburg, Russia
200 schema:name St. Petersburg State Institute of Technology (Technical University), 190013, St. Petersburg, Russia
201 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...