Synthesis of the Ti2AlC MAX Phase with a Reduction Step via Combustion of a TiO2 + Mg + Al + ... View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2018-09

AUTHORS

V. I. Vershinnikov, D. Yu. Kovalev

ABSTRACT

Technologically viable principles have been developed for the preparation of the MAX phase Ti2AlC by self-propagating high-temperature synthesis (SHS) with a reduction step, using titanium dioxide. We have studied the influence of synthesis conditions (starting-mixture composition and ratio of reactants) on the composition, structure, and particle size of Ti2AlC powders. The results demonstrate that an excess of magnesium in the starting mixture leads to a decrease in the percentage of MgAl2O4 (spinel), and carbon deficiency in the starting mixture reduces the percentage of titanium carbide in the final product. The Ti2AlC powders prepared by SHS consist of agglomerates of layered particles differing in size: from coarse (several microns) to ultrafine and nanometer-sized particles. The composition of the powders was confirmed by chemical analysis, microstructural examination, and X-ray diffraction. More... »

PAGES

949-952

References to SciGraph publications

  • 2016-01. Combustion of Ti–Al–C compacts in air and helium: A TRXRD study in INTERNATIONAL JOURNAL OF SELF-PROPAGATING HIGH-TEMPERATURE SYNTHESIS
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1134/s0020168518090170

    DOI

    http://dx.doi.org/10.1134/s0020168518090170

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1106522669


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0306", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Physical Chemistry (incl. Structural)", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/03", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Chemical Sciences", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Russian Academy of Sciences", 
              "id": "https://www.grid.ac/institutes/grid.4886.2", 
              "name": [
                "Merzhanov Institute of Structural Macrokinetics and Materials Science, Russian Academy of Sciences, ul. Akademika Osip\u2019yana 8, 142432, Chernogolovka, Moscow oblast, Russia"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Vershinnikov", 
            "givenName": "V. I.", 
            "id": "sg:person.011255617643.31", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011255617643.31"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Russian Academy of Sciences", 
              "id": "https://www.grid.ac/institutes/grid.4886.2", 
              "name": [
                "Merzhanov Institute of Structural Macrokinetics and Materials Science, Russian Academy of Sciences, ul. Akademika Osip\u2019yana 8, 142432, Chernogolovka, Moscow oblast, Russia"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Kovalev", 
            "givenName": "D. Yu.", 
            "id": "sg:person.07775147503.07", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07775147503.07"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "https://doi.org/10.1111/j.1151-2916.2001.tb01138.x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1009502463"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1111/j.1151-2916.2001.tb01138.x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1009502463"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.matlet.2004.07.052", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1015268286"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1557/jmr.2009.0327", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1019432043"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.3103/s1061386216010027", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1050637204", 
              "https://doi.org/10.3103/s1061386216010027"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2018-09", 
        "datePublishedReg": "2018-09-01", 
        "description": "Technologically viable principles have been developed for the preparation of the MAX phase Ti2AlC by self-propagating high-temperature synthesis (SHS) with a reduction step, using titanium dioxide. We have studied the influence of synthesis conditions (starting-mixture composition and ratio of reactants) on the composition, structure, and particle size of Ti2AlC powders. The results demonstrate that an excess of magnesium in the starting mixture leads to a decrease in the percentage of MgAl2O4 (spinel), and carbon deficiency in the starting mixture reduces the percentage of titanium carbide in the final product. The Ti2AlC powders prepared by SHS consist of agglomerates of layered particles differing in size: from coarse (several microns) to ultrafine and nanometer-sized particles. The composition of the powders was confirmed by chemical analysis, microstructural examination, and X-ray diffraction.", 
        "genre": "research_article", 
        "id": "sg:pub.10.1134/s0020168518090170", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1297638", 
            "issn": [
              "0020-1685", 
              "1608-3172"
            ], 
            "name": "Inorganic Materials", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "9", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "54"
          }
        ], 
        "name": "Synthesis of the Ti2AlC MAX Phase with a Reduction Step via Combustion of a TiO2 + Mg + Al + C Mixture", 
        "pagination": "949-952", 
        "productId": [
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "7c74e74d8068dee42e2ffd35b00305033c577b332ffd18c368256eae00725c84"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1134/s0020168518090170"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1106522669"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1134/s0020168518090170", 
          "https://app.dimensions.ai/details/publication/pub.1106522669"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-10T16:00", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8664_00000569.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://link.springer.com/10.1134%2FS0020168518090170"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1134/s0020168518090170'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1134/s0020168518090170'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1134/s0020168518090170'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1134/s0020168518090170'


     

    This table displays all metadata directly associated to this object as RDF triples.

    81 TRIPLES      21 PREDICATES      31 URIs      19 LITERALS      7 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1134/s0020168518090170 schema:about anzsrc-for:03
    2 anzsrc-for:0306
    3 schema:author Nbb227de02a9241c98ca75712450f76de
    4 schema:citation sg:pub.10.3103/s1061386216010027
    5 https://doi.org/10.1016/j.matlet.2004.07.052
    6 https://doi.org/10.1111/j.1151-2916.2001.tb01138.x
    7 https://doi.org/10.1557/jmr.2009.0327
    8 schema:datePublished 2018-09
    9 schema:datePublishedReg 2018-09-01
    10 schema:description Technologically viable principles have been developed for the preparation of the MAX phase Ti2AlC by self-propagating high-temperature synthesis (SHS) with a reduction step, using titanium dioxide. We have studied the influence of synthesis conditions (starting-mixture composition and ratio of reactants) on the composition, structure, and particle size of Ti2AlC powders. The results demonstrate that an excess of magnesium in the starting mixture leads to a decrease in the percentage of MgAl2O4 (spinel), and carbon deficiency in the starting mixture reduces the percentage of titanium carbide in the final product. The Ti2AlC powders prepared by SHS consist of agglomerates of layered particles differing in size: from coarse (several microns) to ultrafine and nanometer-sized particles. The composition of the powders was confirmed by chemical analysis, microstructural examination, and X-ray diffraction.
    11 schema:genre research_article
    12 schema:inLanguage en
    13 schema:isAccessibleForFree false
    14 schema:isPartOf N9b9e4aea5c7f4387ae19ce273471afb4
    15 Ncbe0044548c145abacf5656c9911a33a
    16 sg:journal.1297638
    17 schema:name Synthesis of the Ti2AlC MAX Phase with a Reduction Step via Combustion of a TiO2 + Mg + Al + C Mixture
    18 schema:pagination 949-952
    19 schema:productId N572c8bac2ea140eabccce81a6e550dcd
    20 Na168545d081a48bfba530eeed2bb5b12
    21 Naf26064728e34edab5e757d0d6b4d99e
    22 schema:sameAs https://app.dimensions.ai/details/publication/pub.1106522669
    23 https://doi.org/10.1134/s0020168518090170
    24 schema:sdDatePublished 2019-04-10T16:00
    25 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    26 schema:sdPublisher Na60da2ecedf8439ba88817109188d0cc
    27 schema:url https://link.springer.com/10.1134%2FS0020168518090170
    28 sgo:license sg:explorer/license/
    29 sgo:sdDataset articles
    30 rdf:type schema:ScholarlyArticle
    31 N572c8bac2ea140eabccce81a6e550dcd schema:name doi
    32 schema:value 10.1134/s0020168518090170
    33 rdf:type schema:PropertyValue
    34 N9b9e4aea5c7f4387ae19ce273471afb4 schema:volumeNumber 54
    35 rdf:type schema:PublicationVolume
    36 Na168545d081a48bfba530eeed2bb5b12 schema:name dimensions_id
    37 schema:value pub.1106522669
    38 rdf:type schema:PropertyValue
    39 Na60da2ecedf8439ba88817109188d0cc schema:name Springer Nature - SN SciGraph project
    40 rdf:type schema:Organization
    41 Naf26064728e34edab5e757d0d6b4d99e schema:name readcube_id
    42 schema:value 7c74e74d8068dee42e2ffd35b00305033c577b332ffd18c368256eae00725c84
    43 rdf:type schema:PropertyValue
    44 Nbb227de02a9241c98ca75712450f76de rdf:first sg:person.011255617643.31
    45 rdf:rest Ne003830850284bd1a9d64befdd2d348f
    46 Ncbe0044548c145abacf5656c9911a33a schema:issueNumber 9
    47 rdf:type schema:PublicationIssue
    48 Ne003830850284bd1a9d64befdd2d348f rdf:first sg:person.07775147503.07
    49 rdf:rest rdf:nil
    50 anzsrc-for:03 schema:inDefinedTermSet anzsrc-for:
    51 schema:name Chemical Sciences
    52 rdf:type schema:DefinedTerm
    53 anzsrc-for:0306 schema:inDefinedTermSet anzsrc-for:
    54 schema:name Physical Chemistry (incl. Structural)
    55 rdf:type schema:DefinedTerm
    56 sg:journal.1297638 schema:issn 0020-1685
    57 1608-3172
    58 schema:name Inorganic Materials
    59 rdf:type schema:Periodical
    60 sg:person.011255617643.31 schema:affiliation https://www.grid.ac/institutes/grid.4886.2
    61 schema:familyName Vershinnikov
    62 schema:givenName V. I.
    63 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011255617643.31
    64 rdf:type schema:Person
    65 sg:person.07775147503.07 schema:affiliation https://www.grid.ac/institutes/grid.4886.2
    66 schema:familyName Kovalev
    67 schema:givenName D. Yu.
    68 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07775147503.07
    69 rdf:type schema:Person
    70 sg:pub.10.3103/s1061386216010027 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050637204
    71 https://doi.org/10.3103/s1061386216010027
    72 rdf:type schema:CreativeWork
    73 https://doi.org/10.1016/j.matlet.2004.07.052 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015268286
    74 rdf:type schema:CreativeWork
    75 https://doi.org/10.1111/j.1151-2916.2001.tb01138.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1009502463
    76 rdf:type schema:CreativeWork
    77 https://doi.org/10.1557/jmr.2009.0327 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019432043
    78 rdf:type schema:CreativeWork
    79 https://www.grid.ac/institutes/grid.4886.2 schema:alternateName Russian Academy of Sciences
    80 schema:name Merzhanov Institute of Structural Macrokinetics and Materials Science, Russian Academy of Sciences, ul. Akademika Osip’yana 8, 142432, Chernogolovka, Moscow oblast, Russia
    81 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...