Effect of Oxygen Impurities on the Phase Composition of Self-Propagating High-Temperature Synthesis Products in the α-Si3N4–MgO System View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2018-05

AUTHORS

V. V. Zakorzhevskii, V. E. Loryan

ABSTRACT

It has been shown that raising the oxygen impurity concentration in starting-mixture components from 0.5 to 2.7 wt % reduces the content of the α-phase form 98 to 83 wt % at synthesis temperatures between 1400 and 1550°C. The role of magnesium oxide as a catalyst of the α → β phase transition becomes more important as the oxygen impurity concentration rises to 2.5 wt % and above. The use of starting-mixture components containing less than 0.3–0.6 wt % oxygen impurities has enabled the synthesis of Si3N4–MgO composites containing up to 95 wt % α-Si3N4 at temperatures in the range 1600–1700°C. More... »

PAGES

434-436

References to SciGraph publications

  • 2009-07. Combustion synthesis of silicon nitride using ultrafine silicon powders in POWDER METALLURGY AND METAL CERAMICS
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1134/s0020168518050175

    DOI

    http://dx.doi.org/10.1134/s0020168518050175

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1103813923


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0912", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Materials Engineering", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Engineering", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Institute of Structural Macrokinetics and Materials Science", 
              "id": "https://www.grid.ac/institutes/grid.466001.5", 
              "name": [
                "Institute of Structural Macrokinetics and Materials Science, Russian Academy of Sciences, ul. Akademika Osip\u2019yana 8, 142432, Chernogolovka, Moscow oblast, Russia"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Zakorzhevskii", 
            "givenName": "V. V.", 
            "id": "sg:person.014671760453.67", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014671760453.67"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Institute of Structural Macrokinetics and Materials Science", 
              "id": "https://www.grid.ac/institutes/grid.466001.5", 
              "name": [
                "Institute of Structural Macrokinetics and Materials Science, Russian Academy of Sciences, ul. Akademika Osip\u2019yana 8, 142432, Chernogolovka, Moscow oblast, Russia"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Loryan", 
            "givenName": "V. E.", 
            "id": "sg:person.015173767307.33", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015173767307.33"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "https://doi.org/10.1016/s0955-2219(98)00172-1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1018036114"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1557/jmr.1999.0264", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1028516125"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11106-009-9155-2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1036403622", 
              "https://doi.org/10.1007/s11106-009-9155-2"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11106-009-9155-2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1036403622", 
              "https://doi.org/10.1007/s11106-009-9155-2"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2018-05", 
        "datePublishedReg": "2018-05-01", 
        "description": "It has been shown that raising the oxygen impurity concentration in starting-mixture components from 0.5 to 2.7 wt % reduces the content of the \u03b1-phase form 98 to 83 wt % at synthesis temperatures between 1400 and 1550\u00b0C. The role of magnesium oxide as a catalyst of the \u03b1 \u2192 \u03b2 phase transition becomes more important as the oxygen impurity concentration rises to 2.5 wt % and above. The use of starting-mixture components containing less than 0.3\u20130.6 wt % oxygen impurities has enabled the synthesis of Si3N4\u2013MgO composites containing up to 95 wt % \u03b1-Si3N4 at temperatures in the range 1600\u20131700\u00b0C.", 
        "genre": "non_research_article", 
        "id": "sg:pub.10.1134/s0020168518050175", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1297638", 
            "issn": [
              "0020-1685", 
              "1608-3172"
            ], 
            "name": "Inorganic Materials", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "5", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "54"
          }
        ], 
        "name": "Effect of Oxygen Impurities on the Phase Composition of Self-Propagating High-Temperature Synthesis Products in the \u03b1-Si3N4\u2013MgO System", 
        "pagination": "434-436", 
        "productId": [
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "9e3faa6e00b5f55918ddcea6a1b9ef879e0d42d338cd351b6fa4fb67f317e38b"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1134/s0020168518050175"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1103813923"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1134/s0020168518050175", 
          "https://app.dimensions.ai/details/publication/pub.1103813923"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-11T01:56", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8700_00000494.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "http://link.springer.com/10.1134/S0020168518050175"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1134/s0020168518050175'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1134/s0020168518050175'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1134/s0020168518050175'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1134/s0020168518050175'


     

    This table displays all metadata directly associated to this object as RDF triples.

    78 TRIPLES      21 PREDICATES      30 URIs      19 LITERALS      7 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1134/s0020168518050175 schema:about anzsrc-for:09
    2 anzsrc-for:0912
    3 schema:author N5a5a4f1280664169854d36263572e029
    4 schema:citation sg:pub.10.1007/s11106-009-9155-2
    5 https://doi.org/10.1016/s0955-2219(98)00172-1
    6 https://doi.org/10.1557/jmr.1999.0264
    7 schema:datePublished 2018-05
    8 schema:datePublishedReg 2018-05-01
    9 schema:description It has been shown that raising the oxygen impurity concentration in starting-mixture components from 0.5 to 2.7 wt % reduces the content of the α-phase form 98 to 83 wt % at synthesis temperatures between 1400 and 1550°C. The role of magnesium oxide as a catalyst of the α → β phase transition becomes more important as the oxygen impurity concentration rises to 2.5 wt % and above. The use of starting-mixture components containing less than 0.3–0.6 wt % oxygen impurities has enabled the synthesis of Si3N4–MgO composites containing up to 95 wt % α-Si3N4 at temperatures in the range 1600–1700°C.
    10 schema:genre non_research_article
    11 schema:inLanguage en
    12 schema:isAccessibleForFree false
    13 schema:isPartOf N5e03ba48f1714883bede0db17a053103
    14 Na6c98d4f82f04ced8f680dc26008a62b
    15 sg:journal.1297638
    16 schema:name Effect of Oxygen Impurities on the Phase Composition of Self-Propagating High-Temperature Synthesis Products in the α-Si3N4–MgO System
    17 schema:pagination 434-436
    18 schema:productId N1644a68715564be9a9db8dd876885cb9
    19 N34d78524915d4118b092ad7078595bc2
    20 Nd26ea5bb28a242ac803b1cc48a186031
    21 schema:sameAs https://app.dimensions.ai/details/publication/pub.1103813923
    22 https://doi.org/10.1134/s0020168518050175
    23 schema:sdDatePublished 2019-04-11T01:56
    24 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    25 schema:sdPublisher N4a5fdad768cd446285555f1a6687ef88
    26 schema:url http://link.springer.com/10.1134/S0020168518050175
    27 sgo:license sg:explorer/license/
    28 sgo:sdDataset articles
    29 rdf:type schema:ScholarlyArticle
    30 N1644a68715564be9a9db8dd876885cb9 schema:name dimensions_id
    31 schema:value pub.1103813923
    32 rdf:type schema:PropertyValue
    33 N34d78524915d4118b092ad7078595bc2 schema:name readcube_id
    34 schema:value 9e3faa6e00b5f55918ddcea6a1b9ef879e0d42d338cd351b6fa4fb67f317e38b
    35 rdf:type schema:PropertyValue
    36 N4a5fdad768cd446285555f1a6687ef88 schema:name Springer Nature - SN SciGraph project
    37 rdf:type schema:Organization
    38 N5a5a4f1280664169854d36263572e029 rdf:first sg:person.014671760453.67
    39 rdf:rest Nc98e972bc68141bb818ed920e31a885d
    40 N5e03ba48f1714883bede0db17a053103 schema:volumeNumber 54
    41 rdf:type schema:PublicationVolume
    42 Na6c98d4f82f04ced8f680dc26008a62b schema:issueNumber 5
    43 rdf:type schema:PublicationIssue
    44 Nc98e972bc68141bb818ed920e31a885d rdf:first sg:person.015173767307.33
    45 rdf:rest rdf:nil
    46 Nd26ea5bb28a242ac803b1cc48a186031 schema:name doi
    47 schema:value 10.1134/s0020168518050175
    48 rdf:type schema:PropertyValue
    49 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
    50 schema:name Engineering
    51 rdf:type schema:DefinedTerm
    52 anzsrc-for:0912 schema:inDefinedTermSet anzsrc-for:
    53 schema:name Materials Engineering
    54 rdf:type schema:DefinedTerm
    55 sg:journal.1297638 schema:issn 0020-1685
    56 1608-3172
    57 schema:name Inorganic Materials
    58 rdf:type schema:Periodical
    59 sg:person.014671760453.67 schema:affiliation https://www.grid.ac/institutes/grid.466001.5
    60 schema:familyName Zakorzhevskii
    61 schema:givenName V. V.
    62 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014671760453.67
    63 rdf:type schema:Person
    64 sg:person.015173767307.33 schema:affiliation https://www.grid.ac/institutes/grid.466001.5
    65 schema:familyName Loryan
    66 schema:givenName V. E.
    67 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015173767307.33
    68 rdf:type schema:Person
    69 sg:pub.10.1007/s11106-009-9155-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036403622
    70 https://doi.org/10.1007/s11106-009-9155-2
    71 rdf:type schema:CreativeWork
    72 https://doi.org/10.1016/s0955-2219(98)00172-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018036114
    73 rdf:type schema:CreativeWork
    74 https://doi.org/10.1557/jmr.1999.0264 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028516125
    75 rdf:type schema:CreativeWork
    76 https://www.grid.ac/institutes/grid.466001.5 schema:alternateName Institute of Structural Macrokinetics and Materials Science
    77 schema:name Institute of Structural Macrokinetics and Materials Science, Russian Academy of Sciences, ul. Akademika Osip’yana 8, 142432, Chernogolovka, Moscow oblast, Russia
    78 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...