Effect of the Surface Modification of Synthetic Diamond with Nickel or Tungsten on the Properties of Copper–Diamond Composites View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2018-05-04

AUTHORS

A. V. Ukhina, D. V. Dudina, D. A. Samoshkin, E. N. Galashov, I. N. Skovorodin, B. B. Bokhonov

ABSTRACT

Tungsten- and nickel-containing coatings have been produced on the surface of synthetic diamond crystals by rotary chemical vapor deposition (RCVD) using tungsten hexacarbonyl, W(CO)6, and nickelocene, Ni(C5H5)2, as gaseous precursors. The thickness, composition, and morphology of the coatings have been shown to depend on the RCVD process duration and reactant concentrations in the vapor phase. The synthetic diamond microcrystals with tungsten- and nickel-containing coatings have been used to produce copper–diamond heat-conducting composites. Powder mixtures containing 50 vol % diamond with a particle size of 50, 100, or 200 μm have been consolidated by spark plasma sintering or hot pressing. It has been shown that the highest relative density (97%) and thermal conductivity (340 W/(m K)) are offered by the composites produced by spark plasma sintering using tungsten carbide-coated 50-μm diamond crystals. More... »

PAGES

426-433

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1134/s0020168518050151

DOI

http://dx.doi.org/10.1134/s0020168518050151

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1103814882


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/03", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Chemical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0306", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Chemistry (incl. Structural)", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0912", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Materials Engineering", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Institute of Solid State Chemistry and Mechanochemistry, Siberian Branch, Russian Academy of Sciences, ul. Kutateladze 18, 630128, Novosibirsk, Russia", 
          "id": "http://www.grid.ac/institutes/grid.415877.8", 
          "name": [
            "Institute of Solid State Chemistry and Mechanochemistry, Siberian Branch, Russian Academy of Sciences, ul. Kutateladze 18, 630128, Novosibirsk, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ukhina", 
        "givenName": "A. V.", 
        "id": "sg:person.011461345634.12", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011461345634.12"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Lavrentyev Institute of Hydrodynamics, Siberian Branch, Russian Academy of Sciences, pr. Akademika Lavrent\u2019eva 15, 630090, Novosibirsk, Russia", 
          "id": "http://www.grid.ac/institutes/grid.436213.1", 
          "name": [
            "Institute of Solid State Chemistry and Mechanochemistry, Siberian Branch, Russian Academy of Sciences, ul. Kutateladze 18, 630128, Novosibirsk, Russia", 
            "Lavrentyev Institute of Hydrodynamics, Siberian Branch, Russian Academy of Sciences, pr. Akademika Lavrent\u2019eva 15, 630090, Novosibirsk, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Dudina", 
        "givenName": "D. V.", 
        "id": "sg:person.013776453602.94", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013776453602.94"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Kutateladze Institute of Thermophysics, Siberian Branch, Russian Academy of Sciences, pr. Akademika Lavrent\u2019eva 1, 630090, Novosibirsk, Russia", 
          "id": "http://www.grid.ac/institutes/grid.415877.8", 
          "name": [
            "Kutateladze Institute of Thermophysics, Siberian Branch, Russian Academy of Sciences, pr. Akademika Lavrent\u2019eva 1, 630090, Novosibirsk, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Samoshkin", 
        "givenName": "D. A.", 
        "id": "sg:person.013163732411.19", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013163732411.19"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Novosibirsk State University, ul. Pirogova 2, 630090, Novosibirsk, Russia", 
          "id": "http://www.grid.ac/institutes/grid.4605.7", 
          "name": [
            "Novosibirsk State University, ul. Pirogova 2, 630090, Novosibirsk, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Galashov", 
        "givenName": "E. N.", 
        "id": "sg:person.013635452555.98", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013635452555.98"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Institute of Automation and Electrometry, Siberian Branch, Russian Academy of Sciences, pr. Akademika Koptyuga 1, 630090, Novosibirsk, Russia", 
          "id": "http://www.grid.ac/institutes/grid.415877.8", 
          "name": [
            "Institute of Automation and Electrometry, Siberian Branch, Russian Academy of Sciences, pr. Akademika Koptyuga 1, 630090, Novosibirsk, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Skovorodin", 
        "givenName": "I. N.", 
        "id": "sg:person.012222145304.24", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012222145304.24"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Novosibirsk State University, ul. Pirogova 2, 630090, Novosibirsk, Russia", 
          "id": "http://www.grid.ac/institutes/grid.4605.7", 
          "name": [
            "Institute of Solid State Chemistry and Mechanochemistry, Siberian Branch, Russian Academy of Sciences, ul. Kutateladze 18, 630128, Novosibirsk, Russia", 
            "Novosibirsk State University, ul. Pirogova 2, 630090, Novosibirsk, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Bokhonov", 
        "givenName": "B. B.", 
        "id": "sg:person.013054306634.87", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013054306634.87"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/s10853-010-4938-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020280029", 
          "https://doi.org/10.1007/s10853-010-4938-x"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00170-015-8186-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007474106", 
          "https://doi.org/10.1007/s00170-015-8186-8"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2018-05-04", 
    "datePublishedReg": "2018-05-04", 
    "description": "Tungsten- and nickel-containing coatings have been produced on the surface of synthetic diamond crystals by rotary chemical vapor deposition (RCVD) using tungsten hexacarbonyl, W(CO)6, and nickelocene, Ni(C5H5)2, as gaseous precursors. The thickness, composition, and morphology of the coatings have been shown to depend on the RCVD process duration and reactant concentrations in the vapor phase. The synthetic diamond microcrystals with tungsten- and nickel-containing coatings have been used to produce copper\u2013diamond heat-conducting composites. Powder mixtures containing 50 vol % diamond with a particle size of 50, 100, or 200 \u03bcm have been consolidated by spark plasma sintering or hot pressing. It has been shown that the highest relative density (97%) and thermal conductivity (340 W/(m K)) are offered by the composites produced by spark plasma sintering using tungsten carbide-coated 50-\u03bcm diamond crystals.", 
    "genre": "article", 
    "id": "sg:pub.10.1134/s0020168518050151", 
    "inLanguage": "en", 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1297638", 
        "issn": [
          "0020-1685", 
          "1608-3172"
        ], 
        "name": "Inorganic Materials", 
        "publisher": "Pleiades Publishing", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "5", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "54"
      }
    ], 
    "keywords": [
      "rotary chemical vapor deposition", 
      "copper\u2013diamond composites", 
      "spark plasma sintering", 
      "high relative density", 
      "plasma sintering", 
      "hot pressing", 
      "spark plasma", 
      "thermal conductivity", 
      "powder mixtures", 
      "chemical vapor deposition", 
      "relative density", 
      "composites", 
      "surface modification", 
      "process duration", 
      "coatings", 
      "vapor deposition", 
      "particle size", 
      "tungsten hexacarbonyl", 
      "diamond crystals", 
      "synthetic diamond crystals", 
      "reactant concentration", 
      "diamond microcrystals", 
      "tungsten", 
      "gaseous precursors", 
      "vapor phase", 
      "synthetic diamond", 
      "diamond", 
      "pressing", 
      "sintering", 
      "crystals", 
      "conductivity", 
      "hexacarbonyl", 
      "nickelocene", 
      "thickness", 
      "nickel", 
      "vol", 
      "microcrystals", 
      "surface", 
      "deposition", 
      "precursors", 
      "properties", 
      "mixture", 
      "morphology", 
      "density", 
      "phase", 
      "composition", 
      "modification", 
      "size", 
      "concentration", 
      "plasma", 
      "effect", 
      "duration", 
      "nickel-containing coatings", 
      "RCVD process duration", 
      "synthetic diamond microcrystals", 
      "copper\u2013diamond heat-conducting composites", 
      "heat-conducting composites"
    ], 
    "name": "Effect of the Surface Modification of Synthetic Diamond with Nickel or Tungsten on the Properties of Copper\u2013Diamond Composites", 
    "pagination": "426-433", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1103814882"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1134/s0020168518050151"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1134/s0020168518050151", 
      "https://app.dimensions.ai/details/publication/pub.1103814882"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-01-01T18:50", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220101/entities/gbq_results/article/article_783.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1134/s0020168518050151"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1134/s0020168518050151'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1134/s0020168518050151'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1134/s0020168518050151'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1134/s0020168518050151'


 

This table displays all metadata directly associated to this object as RDF triples.

178 TRIPLES      22 PREDICATES      86 URIs      74 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1134/s0020168518050151 schema:about anzsrc-for:03
2 anzsrc-for:0306
3 anzsrc-for:09
4 anzsrc-for:0912
5 schema:author Nd4e67ef0f5d747a6a9cb530cb9375751
6 schema:citation sg:pub.10.1007/s00170-015-8186-8
7 sg:pub.10.1007/s10853-010-4938-x
8 schema:datePublished 2018-05-04
9 schema:datePublishedReg 2018-05-04
10 schema:description Tungsten- and nickel-containing coatings have been produced on the surface of synthetic diamond crystals by rotary chemical vapor deposition (RCVD) using tungsten hexacarbonyl, W(CO)6, and nickelocene, Ni(C5H5)2, as gaseous precursors. The thickness, composition, and morphology of the coatings have been shown to depend on the RCVD process duration and reactant concentrations in the vapor phase. The synthetic diamond microcrystals with tungsten- and nickel-containing coatings have been used to produce copper–diamond heat-conducting composites. Powder mixtures containing 50 vol % diamond with a particle size of 50, 100, or 200 μm have been consolidated by spark plasma sintering or hot pressing. It has been shown that the highest relative density (97%) and thermal conductivity (340 W/(m K)) are offered by the composites produced by spark plasma sintering using tungsten carbide-coated 50-μm diamond crystals.
11 schema:genre article
12 schema:inLanguage en
13 schema:isAccessibleForFree false
14 schema:isPartOf N63f73c104a5e41839f3e4ce9ebe56873
15 N6e37ada90a8e40c5be28984b6cce3a00
16 sg:journal.1297638
17 schema:keywords RCVD process duration
18 chemical vapor deposition
19 coatings
20 composites
21 composition
22 concentration
23 conductivity
24 copper–diamond composites
25 copper–diamond heat-conducting composites
26 crystals
27 density
28 deposition
29 diamond
30 diamond crystals
31 diamond microcrystals
32 duration
33 effect
34 gaseous precursors
35 heat-conducting composites
36 hexacarbonyl
37 high relative density
38 hot pressing
39 microcrystals
40 mixture
41 modification
42 morphology
43 nickel
44 nickel-containing coatings
45 nickelocene
46 particle size
47 phase
48 plasma
49 plasma sintering
50 powder mixtures
51 precursors
52 pressing
53 process duration
54 properties
55 reactant concentration
56 relative density
57 rotary chemical vapor deposition
58 sintering
59 size
60 spark plasma
61 spark plasma sintering
62 surface
63 surface modification
64 synthetic diamond
65 synthetic diamond crystals
66 synthetic diamond microcrystals
67 thermal conductivity
68 thickness
69 tungsten
70 tungsten hexacarbonyl
71 vapor deposition
72 vapor phase
73 vol
74 schema:name Effect of the Surface Modification of Synthetic Diamond with Nickel or Tungsten on the Properties of Copper–Diamond Composites
75 schema:pagination 426-433
76 schema:productId N4efa97df34a9493cab9c8058f0f73d0a
77 Na19f849801dc41b29ca223a94be113d0
78 schema:sameAs https://app.dimensions.ai/details/publication/pub.1103814882
79 https://doi.org/10.1134/s0020168518050151
80 schema:sdDatePublished 2022-01-01T18:50
81 schema:sdLicense https://scigraph.springernature.com/explorer/license/
82 schema:sdPublisher Neb3a0b9f950d4065810ef318b9266cf1
83 schema:url https://doi.org/10.1134/s0020168518050151
84 sgo:license sg:explorer/license/
85 sgo:sdDataset articles
86 rdf:type schema:ScholarlyArticle
87 N3e51539500a243c5a20df10acbaf9a2d rdf:first sg:person.013163732411.19
88 rdf:rest Nd15d3c9e529a4d899350f885e3853bcd
89 N4efa97df34a9493cab9c8058f0f73d0a schema:name dimensions_id
90 schema:value pub.1103814882
91 rdf:type schema:PropertyValue
92 N63f73c104a5e41839f3e4ce9ebe56873 schema:issueNumber 5
93 rdf:type schema:PublicationIssue
94 N6e37ada90a8e40c5be28984b6cce3a00 schema:volumeNumber 54
95 rdf:type schema:PublicationVolume
96 N88ce271e790b4218aeca1c7b66f2b14c rdf:first sg:person.012222145304.24
97 rdf:rest Ne4aeae0520ca40039f0cc95c0e8940fd
98 Na19f849801dc41b29ca223a94be113d0 schema:name doi
99 schema:value 10.1134/s0020168518050151
100 rdf:type schema:PropertyValue
101 Nd15d3c9e529a4d899350f885e3853bcd rdf:first sg:person.013635452555.98
102 rdf:rest N88ce271e790b4218aeca1c7b66f2b14c
103 Nd4e67ef0f5d747a6a9cb530cb9375751 rdf:first sg:person.011461345634.12
104 rdf:rest Ndda5433c096341379173724778ceb64a
105 Ndda5433c096341379173724778ceb64a rdf:first sg:person.013776453602.94
106 rdf:rest N3e51539500a243c5a20df10acbaf9a2d
107 Ne4aeae0520ca40039f0cc95c0e8940fd rdf:first sg:person.013054306634.87
108 rdf:rest rdf:nil
109 Neb3a0b9f950d4065810ef318b9266cf1 schema:name Springer Nature - SN SciGraph project
110 rdf:type schema:Organization
111 anzsrc-for:03 schema:inDefinedTermSet anzsrc-for:
112 schema:name Chemical Sciences
113 rdf:type schema:DefinedTerm
114 anzsrc-for:0306 schema:inDefinedTermSet anzsrc-for:
115 schema:name Physical Chemistry (incl. Structural)
116 rdf:type schema:DefinedTerm
117 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
118 schema:name Engineering
119 rdf:type schema:DefinedTerm
120 anzsrc-for:0912 schema:inDefinedTermSet anzsrc-for:
121 schema:name Materials Engineering
122 rdf:type schema:DefinedTerm
123 sg:journal.1297638 schema:issn 0020-1685
124 1608-3172
125 schema:name Inorganic Materials
126 schema:publisher Pleiades Publishing
127 rdf:type schema:Periodical
128 sg:person.011461345634.12 schema:affiliation grid-institutes:grid.415877.8
129 schema:familyName Ukhina
130 schema:givenName A. V.
131 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011461345634.12
132 rdf:type schema:Person
133 sg:person.012222145304.24 schema:affiliation grid-institutes:grid.415877.8
134 schema:familyName Skovorodin
135 schema:givenName I. N.
136 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012222145304.24
137 rdf:type schema:Person
138 sg:person.013054306634.87 schema:affiliation grid-institutes:grid.4605.7
139 schema:familyName Bokhonov
140 schema:givenName B. B.
141 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013054306634.87
142 rdf:type schema:Person
143 sg:person.013163732411.19 schema:affiliation grid-institutes:grid.415877.8
144 schema:familyName Samoshkin
145 schema:givenName D. A.
146 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013163732411.19
147 rdf:type schema:Person
148 sg:person.013635452555.98 schema:affiliation grid-institutes:grid.4605.7
149 schema:familyName Galashov
150 schema:givenName E. N.
151 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013635452555.98
152 rdf:type schema:Person
153 sg:person.013776453602.94 schema:affiliation grid-institutes:grid.436213.1
154 schema:familyName Dudina
155 schema:givenName D. V.
156 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013776453602.94
157 rdf:type schema:Person
158 sg:pub.10.1007/s00170-015-8186-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007474106
159 https://doi.org/10.1007/s00170-015-8186-8
160 rdf:type schema:CreativeWork
161 sg:pub.10.1007/s10853-010-4938-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1020280029
162 https://doi.org/10.1007/s10853-010-4938-x
163 rdf:type schema:CreativeWork
164 grid-institutes:grid.415877.8 schema:alternateName Institute of Automation and Electrometry, Siberian Branch, Russian Academy of Sciences, pr. Akademika Koptyuga 1, 630090, Novosibirsk, Russia
165 Institute of Solid State Chemistry and Mechanochemistry, Siberian Branch, Russian Academy of Sciences, ul. Kutateladze 18, 630128, Novosibirsk, Russia
166 Kutateladze Institute of Thermophysics, Siberian Branch, Russian Academy of Sciences, pr. Akademika Lavrent’eva 1, 630090, Novosibirsk, Russia
167 schema:name Institute of Automation and Electrometry, Siberian Branch, Russian Academy of Sciences, pr. Akademika Koptyuga 1, 630090, Novosibirsk, Russia
168 Institute of Solid State Chemistry and Mechanochemistry, Siberian Branch, Russian Academy of Sciences, ul. Kutateladze 18, 630128, Novosibirsk, Russia
169 Kutateladze Institute of Thermophysics, Siberian Branch, Russian Academy of Sciences, pr. Akademika Lavrent’eva 1, 630090, Novosibirsk, Russia
170 rdf:type schema:Organization
171 grid-institutes:grid.436213.1 schema:alternateName Lavrentyev Institute of Hydrodynamics, Siberian Branch, Russian Academy of Sciences, pr. Akademika Lavrent’eva 15, 630090, Novosibirsk, Russia
172 schema:name Institute of Solid State Chemistry and Mechanochemistry, Siberian Branch, Russian Academy of Sciences, ul. Kutateladze 18, 630128, Novosibirsk, Russia
173 Lavrentyev Institute of Hydrodynamics, Siberian Branch, Russian Academy of Sciences, pr. Akademika Lavrent’eva 15, 630090, Novosibirsk, Russia
174 rdf:type schema:Organization
175 grid-institutes:grid.4605.7 schema:alternateName Novosibirsk State University, ul. Pirogova 2, 630090, Novosibirsk, Russia
176 schema:name Institute of Solid State Chemistry and Mechanochemistry, Siberian Branch, Russian Academy of Sciences, ul. Kutateladze 18, 630128, Novosibirsk, Russia
177 Novosibirsk State University, ul. Pirogova 2, 630090, Novosibirsk, Russia
178 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...