Electronic structure of gold nanoparticles View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2012-10-09

AUTHORS

V. G. Yarzhemsky, E. N. Murav’ev, M. A. Kazaryan, Yu. A. Dyakov

ABSTRACT

Using the B3LYP/LANL2DZ method, we have calculated the spatial and electronic structures of a Au32 nanocluster with Ih symmetry. The results suggest that the highest occupied orbitals have a significant density of d states, in agreement with angle-resolved photoelectron spectroscopy data for metallic gold. Relying on the densities of states obtained for the occupied and excited orbitals, we discuss optical electronic transitions in a laser based on gold nanoparticles. More... »

PAGES

1075-1077

References to SciGraph publications

  • 2010-08-29. Quantum-chemical modeling of interaction between gold nanoclusters and thiols in INORGANIC MATERIALS
  • 2011-12-23. The structure of gold nanoparticles and Au based thiol self-organized monolayers in RUSSIAN JOURNAL OF INORGANIC CHEMISTRY
  • 2005-10-19. Gold rush in NATURE
  • 2009-08-16. Demonstration of a spaser-based nanolaser in NATURE
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1134/s0020168512110180

    DOI

    http://dx.doi.org/10.1134/s0020168512110180

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1040338424


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/03", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Chemical Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0306", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Physical Chemistry (incl. Structural)", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, Leninskii pr. 31, 119991, Moscow, Russia", 
              "id": "http://www.grid.ac/institutes/grid.435216.7", 
              "name": [
                "Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, Leninskii pr. 31, 119991, Moscow, Russia"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Yarzhemsky", 
            "givenName": "V. G.", 
            "id": "sg:person.07645440044.63", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07645440044.63"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Research Institute of Technical Glass, ul. Krzhizhanovskogo 29, 117218, Moscow, Russia", 
              "id": "http://www.grid.ac/institutes/grid.494930.3", 
              "name": [
                "Research Institute of Technical Glass, ul. Krzhizhanovskogo 29, 117218, Moscow, Russia"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Murav\u2019ev", 
            "givenName": "E. N.", 
            "id": "sg:person.016355145667.50", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016355145667.50"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Lebedev Institute of Physics, Russian Academy of Sciences, Leninskii pr. 53, 119991, Moscow, Russia", 
              "id": "http://www.grid.ac/institutes/grid.425806.d", 
              "name": [
                "Lebedev Institute of Physics, Russian Academy of Sciences, Leninskii pr. 53, 119991, Moscow, Russia"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Kazaryan", 
            "givenName": "M. A.", 
            "id": "sg:person.010570671107.78", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010570671107.78"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Institute of Atomic and Molecular Sciences, Academia Sinica, 1 Roosevelt Road, 10617, Taipei, Taiwan", 
              "id": "http://www.grid.ac/institutes/grid.28665.3f", 
              "name": [
                "Institute of Atomic and Molecular Sciences, Academia Sinica, 1 Roosevelt Road, 10617, Taipei, Taiwan"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Dyakov", 
            "givenName": "Yu. A.", 
            "id": "sg:person.01201116115.56", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01201116115.56"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1038/4371098a", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1000723677", 
              "https://doi.org/10.1038/4371098a"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature08318", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1014287162", 
              "https://doi.org/10.1038/nature08318"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1134/s0020168510090025", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1020555761", 
              "https://doi.org/10.1134/s0020168510090025"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1134/s003602361114004x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1048509553", 
              "https://doi.org/10.1134/s003602361114004x"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2012-10-09", 
        "datePublishedReg": "2012-10-09", 
        "description": "Using the B3LYP/LANL2DZ method, we have calculated the spatial and electronic structures of a Au32 nanocluster with Ih symmetry. The results suggest that the highest occupied orbitals have a significant density of d states, in agreement with angle-resolved photoelectron spectroscopy data for metallic gold. Relying on the densities of states obtained for the occupied and excited orbitals, we discuss optical electronic transitions in a laser based on gold nanoparticles.", 
        "genre": "article", 
        "id": "sg:pub.10.1134/s0020168512110180", 
        "inLanguage": "en", 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1297638", 
            "issn": [
              "0020-1685", 
              "1608-3172"
            ], 
            "name": "Inorganic Materials", 
            "publisher": "Pleiades Publishing", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "11", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "48"
          }
        ], 
        "keywords": [
          "gold nanoparticles", 
          "electronic structure", 
          "B3LYP/LANL2DZ method", 
          "photoelectron spectroscopy data", 
          "optical electronic transitions", 
          "metallic gold", 
          "spectroscopy data", 
          "electronic transitions", 
          "Ih symmetry", 
          "density of states", 
          "nanoparticles", 
          "orbitals", 
          "nanoclusters", 
          "excited orbitals", 
          "gold", 
          "structure", 
          "significant density", 
          "density", 
          "state", 
          "symmetry", 
          "transition", 
          "angle", 
          "method", 
          "laser", 
          "agreement", 
          "results", 
          "data", 
          "LANL2DZ method", 
          "Au32 nanocluster"
        ], 
        "name": "Electronic structure of gold nanoparticles", 
        "pagination": "1075-1077", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1040338424"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1134/s0020168512110180"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1134/s0020168512110180", 
          "https://app.dimensions.ai/details/publication/pub.1040338424"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2021-11-01T18:18", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20211101/entities/gbq_results/article/article_566.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1134/s0020168512110180"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1134/s0020168512110180'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1134/s0020168512110180'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1134/s0020168512110180'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1134/s0020168512110180'


     

    This table displays all metadata directly associated to this object as RDF triples.

    133 TRIPLES      22 PREDICATES      58 URIs      46 LITERALS      6 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1134/s0020168512110180 schema:about anzsrc-for:03
    2 anzsrc-for:0306
    3 schema:author Nff6f6486a23e4963b9609698064559ac
    4 schema:citation sg:pub.10.1038/4371098a
    5 sg:pub.10.1038/nature08318
    6 sg:pub.10.1134/s0020168510090025
    7 sg:pub.10.1134/s003602361114004x
    8 schema:datePublished 2012-10-09
    9 schema:datePublishedReg 2012-10-09
    10 schema:description Using the B3LYP/LANL2DZ method, we have calculated the spatial and electronic structures of a Au32 nanocluster with Ih symmetry. The results suggest that the highest occupied orbitals have a significant density of d states, in agreement with angle-resolved photoelectron spectroscopy data for metallic gold. Relying on the densities of states obtained for the occupied and excited orbitals, we discuss optical electronic transitions in a laser based on gold nanoparticles.
    11 schema:genre article
    12 schema:inLanguage en
    13 schema:isAccessibleForFree false
    14 schema:isPartOf Nba70c2ec827540ecba01b4548d20f09c
    15 Nf796de95a8944c3882a1688b0b17b75a
    16 sg:journal.1297638
    17 schema:keywords Au32 nanocluster
    18 B3LYP/LANL2DZ method
    19 Ih symmetry
    20 LANL2DZ method
    21 agreement
    22 angle
    23 data
    24 density
    25 density of states
    26 electronic structure
    27 electronic transitions
    28 excited orbitals
    29 gold
    30 gold nanoparticles
    31 laser
    32 metallic gold
    33 method
    34 nanoclusters
    35 nanoparticles
    36 optical electronic transitions
    37 orbitals
    38 photoelectron spectroscopy data
    39 results
    40 significant density
    41 spectroscopy data
    42 state
    43 structure
    44 symmetry
    45 transition
    46 schema:name Electronic structure of gold nanoparticles
    47 schema:pagination 1075-1077
    48 schema:productId N502a6d57ecad4df7b07b6f3fbe38836a
    49 N6f7879ecc33f4633a2238f1550f47305
    50 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040338424
    51 https://doi.org/10.1134/s0020168512110180
    52 schema:sdDatePublished 2021-11-01T18:18
    53 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    54 schema:sdPublisher Nd94292c14e304f54ac93a593b539a570
    55 schema:url https://doi.org/10.1134/s0020168512110180
    56 sgo:license sg:explorer/license/
    57 sgo:sdDataset articles
    58 rdf:type schema:ScholarlyArticle
    59 N502a6d57ecad4df7b07b6f3fbe38836a schema:name dimensions_id
    60 schema:value pub.1040338424
    61 rdf:type schema:PropertyValue
    62 N5a355b372f4241f4881ada4110e422a8 rdf:first sg:person.016355145667.50
    63 rdf:rest N5bef2e035cfd4d739259d5505b3bfe5c
    64 N5bef2e035cfd4d739259d5505b3bfe5c rdf:first sg:person.010570671107.78
    65 rdf:rest N9cfdcda3c4d04ebbb4ee9259a6392b74
    66 N6f7879ecc33f4633a2238f1550f47305 schema:name doi
    67 schema:value 10.1134/s0020168512110180
    68 rdf:type schema:PropertyValue
    69 N9cfdcda3c4d04ebbb4ee9259a6392b74 rdf:first sg:person.01201116115.56
    70 rdf:rest rdf:nil
    71 Nba70c2ec827540ecba01b4548d20f09c schema:issueNumber 11
    72 rdf:type schema:PublicationIssue
    73 Nd94292c14e304f54ac93a593b539a570 schema:name Springer Nature - SN SciGraph project
    74 rdf:type schema:Organization
    75 Nf796de95a8944c3882a1688b0b17b75a schema:volumeNumber 48
    76 rdf:type schema:PublicationVolume
    77 Nff6f6486a23e4963b9609698064559ac rdf:first sg:person.07645440044.63
    78 rdf:rest N5a355b372f4241f4881ada4110e422a8
    79 anzsrc-for:03 schema:inDefinedTermSet anzsrc-for:
    80 schema:name Chemical Sciences
    81 rdf:type schema:DefinedTerm
    82 anzsrc-for:0306 schema:inDefinedTermSet anzsrc-for:
    83 schema:name Physical Chemistry (incl. Structural)
    84 rdf:type schema:DefinedTerm
    85 sg:journal.1297638 schema:issn 0020-1685
    86 1608-3172
    87 schema:name Inorganic Materials
    88 schema:publisher Pleiades Publishing
    89 rdf:type schema:Periodical
    90 sg:person.010570671107.78 schema:affiliation grid-institutes:grid.425806.d
    91 schema:familyName Kazaryan
    92 schema:givenName M. A.
    93 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010570671107.78
    94 rdf:type schema:Person
    95 sg:person.01201116115.56 schema:affiliation grid-institutes:grid.28665.3f
    96 schema:familyName Dyakov
    97 schema:givenName Yu. A.
    98 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01201116115.56
    99 rdf:type schema:Person
    100 sg:person.016355145667.50 schema:affiliation grid-institutes:grid.494930.3
    101 schema:familyName Murav’ev
    102 schema:givenName E. N.
    103 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016355145667.50
    104 rdf:type schema:Person
    105 sg:person.07645440044.63 schema:affiliation grid-institutes:grid.435216.7
    106 schema:familyName Yarzhemsky
    107 schema:givenName V. G.
    108 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07645440044.63
    109 rdf:type schema:Person
    110 sg:pub.10.1038/4371098a schema:sameAs https://app.dimensions.ai/details/publication/pub.1000723677
    111 https://doi.org/10.1038/4371098a
    112 rdf:type schema:CreativeWork
    113 sg:pub.10.1038/nature08318 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014287162
    114 https://doi.org/10.1038/nature08318
    115 rdf:type schema:CreativeWork
    116 sg:pub.10.1134/s0020168510090025 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020555761
    117 https://doi.org/10.1134/s0020168510090025
    118 rdf:type schema:CreativeWork
    119 sg:pub.10.1134/s003602361114004x schema:sameAs https://app.dimensions.ai/details/publication/pub.1048509553
    120 https://doi.org/10.1134/s003602361114004x
    121 rdf:type schema:CreativeWork
    122 grid-institutes:grid.28665.3f schema:alternateName Institute of Atomic and Molecular Sciences, Academia Sinica, 1 Roosevelt Road, 10617, Taipei, Taiwan
    123 schema:name Institute of Atomic and Molecular Sciences, Academia Sinica, 1 Roosevelt Road, 10617, Taipei, Taiwan
    124 rdf:type schema:Organization
    125 grid-institutes:grid.425806.d schema:alternateName Lebedev Institute of Physics, Russian Academy of Sciences, Leninskii pr. 53, 119991, Moscow, Russia
    126 schema:name Lebedev Institute of Physics, Russian Academy of Sciences, Leninskii pr. 53, 119991, Moscow, Russia
    127 rdf:type schema:Organization
    128 grid-institutes:grid.435216.7 schema:alternateName Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, Leninskii pr. 31, 119991, Moscow, Russia
    129 schema:name Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, Leninskii pr. 31, 119991, Moscow, Russia
    130 rdf:type schema:Organization
    131 grid-institutes:grid.494930.3 schema:alternateName Research Institute of Technical Glass, ul. Krzhizhanovskogo 29, 117218, Moscow, Russia
    132 schema:name Research Institute of Technical Glass, ul. Krzhizhanovskogo 29, 117218, Moscow, Russia
    133 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...