Effect of microstructure and grain size on the thermal conductivity of high-pressure-sintered diamond composites View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2008-03

AUTHORS

E. A. Ekimov, N. V. Suetin, A. F. Popovich, V. G. Ralchenko, E. L. Gromnitskaya, V. P. Modenov

ABSTRACT

We have studied the effect of the particle size of diamond (several microns to 500 μm) on the thermal conductivity of high-pressure-sintered diamond composites. The results demonstrate that the thermal conductivity of diamond-matrix composites prepared at 8 GPa in the presence of copper rises steeply with increasing diamond particle size, reaching a maximum, 9 W/(cm K), at a particle size of 200–250 μm. In the case of the samples prepared at 2 GPa and containing isolated diamond grains in a Cu-Ti binder, the grain size has a weaker effect on the thermal conductivity of the material, which can be accounted for by the low thermal conductivity and key microstructural features of the binder. More... »

PAGES

224-229

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1134/s0020168508030035

DOI

http://dx.doi.org/10.1134/s0020168508030035

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1049447606


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0912", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Materials Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Engineering", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Russian Academy of Sciences", 
          "id": "https://www.grid.ac/institutes/grid.4886.2", 
          "name": [
            "Vereshchagin Institute of High-Pressure Physics, Russian Academy of Sciences, 142190, Troitsk, Moscow oblast, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ekimov", 
        "givenName": "E. A.", 
        "id": "sg:person.01130326404.01", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01130326404.01"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Moscow State University", 
          "id": "https://www.grid.ac/institutes/grid.14476.30", 
          "name": [
            "Skobeltsyn Institute of Nuclear Physics, Moscow State University, Vorob\u2019evy gory 1, 119992, Moscow, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Suetin", 
        "givenName": "N. V.", 
        "id": "sg:person.016560042725.78", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016560042725.78"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Russian Academy of Sciences", 
          "id": "https://www.grid.ac/institutes/grid.4886.2", 
          "name": [
            "Prokhorov General Physics Institute, Russian Academy of Sciences, ul. Vavilova 38, 119333, Moscow, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Popovich", 
        "givenName": "A. F.", 
        "id": "sg:person.012161555605.12", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012161555605.12"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Russian Academy of Sciences", 
          "id": "https://www.grid.ac/institutes/grid.4886.2", 
          "name": [
            "Prokhorov General Physics Institute, Russian Academy of Sciences, ul. Vavilova 38, 119333, Moscow, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ralchenko", 
        "givenName": "V. G.", 
        "id": "sg:person.016264152212.96", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016264152212.96"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Russian Academy of Sciences", 
          "id": "https://www.grid.ac/institutes/grid.4886.2", 
          "name": [
            "Vereshchagin Institute of High-Pressure Physics, Russian Academy of Sciences, 142190, Troitsk, Moscow oblast, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Gromnitskaya", 
        "givenName": "E. L.", 
        "id": "sg:person.01057622717.67", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01057622717.67"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Russian Academy of Sciences", 
          "id": "https://www.grid.ac/institutes/grid.4886.2", 
          "name": [
            "Vereshchagin Institute of High-Pressure Physics, Russian Academy of Sciences, 142190, Troitsk, Moscow oblast, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Modenov", 
        "givenName": "V. P.", 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/s0925-9635(99)00256-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003738559"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1151-2916.1961.tb11671.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004543080"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0022-0248(95)00200-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010307853"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1023/a:1018345702490", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017444720", 
          "https://doi.org/10.1023/a:1018345702490"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0026-2714(03)00215-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028964135"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0026-2714(03)00215-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028964135"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.diamond.2005.09.036", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034005026"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4684-7470-1_121", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041337329", 
          "https://doi.org/10.1007/978-1-4684-7470-1_121"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1023/a:1017560132134", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046707979", 
          "https://doi.org/10.1023/a:1017560132134"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2008-03", 
    "datePublishedReg": "2008-03-01", 
    "description": "We have studied the effect of the particle size of diamond (several microns to 500 \u03bcm) on the thermal conductivity of high-pressure-sintered diamond composites. The results demonstrate that the thermal conductivity of diamond-matrix composites prepared at 8 GPa in the presence of copper rises steeply with increasing diamond particle size, reaching a maximum, 9 W/(cm K), at a particle size of 200\u2013250 \u03bcm. In the case of the samples prepared at 2 GPa and containing isolated diamond grains in a Cu-Ti binder, the grain size has a weaker effect on the thermal conductivity of the material, which can be accounted for by the low thermal conductivity and key microstructural features of the binder.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1134/s0020168508030035", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1297638", 
        "issn": [
          "0020-1685", 
          "1608-3172"
        ], 
        "name": "Inorganic Materials", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "3", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "44"
      }
    ], 
    "name": "Effect of microstructure and grain size on the thermal conductivity of high-pressure-sintered diamond composites", 
    "pagination": "224-229", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "eb8ec88f656e071f5bba6fac4ec0d547e965406933e9b5ecdbf9b75e355f93a8"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1134/s0020168508030035"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1049447606"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1134/s0020168508030035", 
      "https://app.dimensions.ai/details/publication/pub.1049447606"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T14:07", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8660_00000501.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1134/S0020168508030035"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1134/s0020168508030035'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1134/s0020168508030035'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1134/s0020168508030035'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1134/s0020168508030035'


 

This table displays all metadata directly associated to this object as RDF triples.

126 TRIPLES      21 PREDICATES      35 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1134/s0020168508030035 schema:about anzsrc-for:09
2 anzsrc-for:0912
3 schema:author N8a049675788347b38b11a11ad6b8d7fe
4 schema:citation sg:pub.10.1007/978-1-4684-7470-1_121
5 sg:pub.10.1023/a:1017560132134
6 sg:pub.10.1023/a:1018345702490
7 https://doi.org/10.1016/0022-0248(95)00200-6
8 https://doi.org/10.1016/j.diamond.2005.09.036
9 https://doi.org/10.1016/s0026-2714(03)00215-4
10 https://doi.org/10.1016/s0925-9635(99)00256-3
11 https://doi.org/10.1111/j.1151-2916.1961.tb11671.x
12 schema:datePublished 2008-03
13 schema:datePublishedReg 2008-03-01
14 schema:description We have studied the effect of the particle size of diamond (several microns to 500 μm) on the thermal conductivity of high-pressure-sintered diamond composites. The results demonstrate that the thermal conductivity of diamond-matrix composites prepared at 8 GPa in the presence of copper rises steeply with increasing diamond particle size, reaching a maximum, 9 W/(cm K), at a particle size of 200–250 μm. In the case of the samples prepared at 2 GPa and containing isolated diamond grains in a Cu-Ti binder, the grain size has a weaker effect on the thermal conductivity of the material, which can be accounted for by the low thermal conductivity and key microstructural features of the binder.
15 schema:genre research_article
16 schema:inLanguage en
17 schema:isAccessibleForFree false
18 schema:isPartOf N3d6d31e875724cf391f923c20377b740
19 Nabefbfc4a3ab4831ab12da92f91cd64b
20 sg:journal.1297638
21 schema:name Effect of microstructure and grain size on the thermal conductivity of high-pressure-sintered diamond composites
22 schema:pagination 224-229
23 schema:productId N7141c7f154844d4faaae276ec74b0aa0
24 Ne44e86ea4f4b491db42433b9d139dcd1
25 Nec1563cfafd148eeaa44786cdb81f799
26 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049447606
27 https://doi.org/10.1134/s0020168508030035
28 schema:sdDatePublished 2019-04-10T14:07
29 schema:sdLicense https://scigraph.springernature.com/explorer/license/
30 schema:sdPublisher N25aff95346a94390a4f7b6901f9d45c2
31 schema:url http://link.springer.com/10.1134/S0020168508030035
32 sgo:license sg:explorer/license/
33 sgo:sdDataset articles
34 rdf:type schema:ScholarlyArticle
35 N0807bc1e48c64319bd880a3ea34b841e schema:affiliation https://www.grid.ac/institutes/grid.4886.2
36 schema:familyName Modenov
37 schema:givenName V. P.
38 rdf:type schema:Person
39 N0f44b6d969614c13a97ca1d6639c8329 rdf:first sg:person.016560042725.78
40 rdf:rest N4db28581ff67472b89e3d05dcb2b0ed6
41 N1db0cb5f4f9f4a1d8c6474365ff732d1 rdf:first sg:person.016264152212.96
42 rdf:rest Ne9f29450c29643f49b517bdc3c8f5404
43 N25aff95346a94390a4f7b6901f9d45c2 schema:name Springer Nature - SN SciGraph project
44 rdf:type schema:Organization
45 N2fe00575c2b14556b4e82ba6eead37f9 rdf:first N0807bc1e48c64319bd880a3ea34b841e
46 rdf:rest rdf:nil
47 N3d6d31e875724cf391f923c20377b740 schema:volumeNumber 44
48 rdf:type schema:PublicationVolume
49 N4db28581ff67472b89e3d05dcb2b0ed6 rdf:first sg:person.012161555605.12
50 rdf:rest N1db0cb5f4f9f4a1d8c6474365ff732d1
51 N7141c7f154844d4faaae276ec74b0aa0 schema:name dimensions_id
52 schema:value pub.1049447606
53 rdf:type schema:PropertyValue
54 N8a049675788347b38b11a11ad6b8d7fe rdf:first sg:person.01130326404.01
55 rdf:rest N0f44b6d969614c13a97ca1d6639c8329
56 Nabefbfc4a3ab4831ab12da92f91cd64b schema:issueNumber 3
57 rdf:type schema:PublicationIssue
58 Ne44e86ea4f4b491db42433b9d139dcd1 schema:name doi
59 schema:value 10.1134/s0020168508030035
60 rdf:type schema:PropertyValue
61 Ne9f29450c29643f49b517bdc3c8f5404 rdf:first sg:person.01057622717.67
62 rdf:rest N2fe00575c2b14556b4e82ba6eead37f9
63 Nec1563cfafd148eeaa44786cdb81f799 schema:name readcube_id
64 schema:value eb8ec88f656e071f5bba6fac4ec0d547e965406933e9b5ecdbf9b75e355f93a8
65 rdf:type schema:PropertyValue
66 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
67 schema:name Engineering
68 rdf:type schema:DefinedTerm
69 anzsrc-for:0912 schema:inDefinedTermSet anzsrc-for:
70 schema:name Materials Engineering
71 rdf:type schema:DefinedTerm
72 sg:journal.1297638 schema:issn 0020-1685
73 1608-3172
74 schema:name Inorganic Materials
75 rdf:type schema:Periodical
76 sg:person.01057622717.67 schema:affiliation https://www.grid.ac/institutes/grid.4886.2
77 schema:familyName Gromnitskaya
78 schema:givenName E. L.
79 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01057622717.67
80 rdf:type schema:Person
81 sg:person.01130326404.01 schema:affiliation https://www.grid.ac/institutes/grid.4886.2
82 schema:familyName Ekimov
83 schema:givenName E. A.
84 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01130326404.01
85 rdf:type schema:Person
86 sg:person.012161555605.12 schema:affiliation https://www.grid.ac/institutes/grid.4886.2
87 schema:familyName Popovich
88 schema:givenName A. F.
89 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012161555605.12
90 rdf:type schema:Person
91 sg:person.016264152212.96 schema:affiliation https://www.grid.ac/institutes/grid.4886.2
92 schema:familyName Ralchenko
93 schema:givenName V. G.
94 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016264152212.96
95 rdf:type schema:Person
96 sg:person.016560042725.78 schema:affiliation https://www.grid.ac/institutes/grid.14476.30
97 schema:familyName Suetin
98 schema:givenName N. V.
99 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016560042725.78
100 rdf:type schema:Person
101 sg:pub.10.1007/978-1-4684-7470-1_121 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041337329
102 https://doi.org/10.1007/978-1-4684-7470-1_121
103 rdf:type schema:CreativeWork
104 sg:pub.10.1023/a:1017560132134 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046707979
105 https://doi.org/10.1023/a:1017560132134
106 rdf:type schema:CreativeWork
107 sg:pub.10.1023/a:1018345702490 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017444720
108 https://doi.org/10.1023/a:1018345702490
109 rdf:type schema:CreativeWork
110 https://doi.org/10.1016/0022-0248(95)00200-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010307853
111 rdf:type schema:CreativeWork
112 https://doi.org/10.1016/j.diamond.2005.09.036 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034005026
113 rdf:type schema:CreativeWork
114 https://doi.org/10.1016/s0026-2714(03)00215-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028964135
115 rdf:type schema:CreativeWork
116 https://doi.org/10.1016/s0925-9635(99)00256-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003738559
117 rdf:type schema:CreativeWork
118 https://doi.org/10.1111/j.1151-2916.1961.tb11671.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1004543080
119 rdf:type schema:CreativeWork
120 https://www.grid.ac/institutes/grid.14476.30 schema:alternateName Moscow State University
121 schema:name Skobeltsyn Institute of Nuclear Physics, Moscow State University, Vorob’evy gory 1, 119992, Moscow, Russia
122 rdf:type schema:Organization
123 https://www.grid.ac/institutes/grid.4886.2 schema:alternateName Russian Academy of Sciences
124 schema:name Prokhorov General Physics Institute, Russian Academy of Sciences, ul. Vavilova 38, 119333, Moscow, Russia
125 Vereshchagin Institute of High-Pressure Physics, Russian Academy of Sciences, 142190, Troitsk, Moscow oblast, Russia
126 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...