Chemical Composition of Bio-oil Obtained via Hydrothermal Liquefaction of Arthrospira platensis Biomass View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2018-11

AUTHORS

M. S. Vlaskin, Yu. I. Kostyukevich, G. N. Vladimirov, N. I. Chernova, S. V. Kiseleva, A. V. Grigorenko, E. N. Nikolaev, O. S. Popel, A. Z. Zhuk

ABSTRACT

The chemical composition of bio-oil obtained from Arthrospira platensis biomass via hydrothermal liquefaction at 240–330°C has been studied with an elemental analysis and Fourier transform ultrahigh resolution mass spectrometry with ionic cyclotron resonance. An increase in temperature leads to an increased bio-oil yield, decreased oxygen, and an increase in the amount of carbon and nitrogen. The weighted Kendrick mass defect histogram showed for the first time that the main nitrogen-containing and oxygen-containing compounds are ON, O2N3, O3N2, ON2, N, and N2. The character of the change in their relative amount in bio-oil with a temperature change is also revealed. The Venn diagram shows the intersection of the sets of molecular formulas found in bio-oil samples obtained at different temperatures. The results may be used to optimize the hydrothermal liquefaction of microalgae and their subsequent processing into motor fuel. More... »

PAGES

915-920

Identifiers

URI

http://scigraph.springernature.com/pub.10.1134/s0018151x18060263

DOI

http://dx.doi.org/10.1134/s0018151x18060263

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1110893832


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0306", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Chemistry (incl. Structural)", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/03", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Chemical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Joint Institute for High Temperatures", 
          "id": "https://www.grid.ac/institutes/grid.435259.c", 
          "name": [
            "Joint Institute for High Temperatures, Russian Academy of Sciences, Moscow, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Vlaskin", 
        "givenName": "M. S.", 
        "id": "sg:person.011716266223.44", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011716266223.44"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Skolkovo Institute of Science and Technology", 
          "id": "https://www.grid.ac/institutes/grid.454320.4", 
          "name": [
            "Joint Institute for High Temperatures, Russian Academy of Sciences, Moscow, Russia", 
            "Skolkovo Institute of Science and Technology, Skolkovo, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kostyukevich", 
        "givenName": "Yu. I.", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Skolkovo Institute of Science and Technology", 
          "id": "https://www.grid.ac/institutes/grid.454320.4", 
          "name": [
            "Joint Institute for High Temperatures, Russian Academy of Sciences, Moscow, Russia", 
            "Skolkovo Institute of Science and Technology, Skolkovo, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Vladimirov", 
        "givenName": "G. N.", 
        "id": "sg:person.01035431534.19", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01035431534.19"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Moscow State University", 
          "id": "https://www.grid.ac/institutes/grid.14476.30", 
          "name": [
            "Joint Institute for High Temperatures, Russian Academy of Sciences, Moscow, Russia", 
            "Moscow State University, Moscow, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Chernova", 
        "givenName": "N. I.", 
        "id": "sg:person.016601027243.79", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016601027243.79"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Moscow State University", 
          "id": "https://www.grid.ac/institutes/grid.14476.30", 
          "name": [
            "Joint Institute for High Temperatures, Russian Academy of Sciences, Moscow, Russia", 
            "Moscow State University, Moscow, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kiseleva", 
        "givenName": "S. V.", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Joint Institute for High Temperatures", 
          "id": "https://www.grid.ac/institutes/grid.435259.c", 
          "name": [
            "Joint Institute for High Temperatures, Russian Academy of Sciences, Moscow, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Grigorenko", 
        "givenName": "A. V.", 
        "id": "sg:person.015222317550.17", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015222317550.17"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Skolkovo Institute of Science and Technology", 
          "id": "https://www.grid.ac/institutes/grid.454320.4", 
          "name": [
            "Skolkovo Institute of Science and Technology, Skolkovo, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Nikolaev", 
        "givenName": "E. N.", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Joint Institute for High Temperatures", 
          "id": "https://www.grid.ac/institutes/grid.435259.c", 
          "name": [
            "Joint Institute for High Temperatures, Russian Academy of Sciences, Moscow, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Popel", 
        "givenName": "O. S.", 
        "id": "sg:person.015340161676.82", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015340161676.82"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Joint Institute for High Temperatures", 
          "id": "https://www.grid.ac/institutes/grid.435259.c", 
          "name": [
            "Joint Institute for High Temperatures, Russian Academy of Sciences, Moscow, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zhuk", 
        "givenName": "A. Z.", 
        "id": "sg:person.07712227157.50", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07712227157.50"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1002/jms.3769", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017712992"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.biombioe.2012.08.009", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027827333"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.biortech.2012.12.144", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027885565"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ijms.2016.03.012", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030505028"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.enconman.2015.02.056", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031006481"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.rser.2016.07.068", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031786616"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.biortech.2013.07.123", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033339052"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.rser.2014.07.176", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034350007"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.algal.2015.12.002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038821353"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.algal.2015.12.002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038821353"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.algal.2015.12.002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038821353"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.algal.2015.12.002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038821353"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1134/s0018151x16020231", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038867631", 
          "https://doi.org/10.1134/s0018151x16020231"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1134/s0018151x16020231", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038867631", 
          "https://doi.org/10.1134/s0018151x16020231"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.algal.2014.12.010", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040366003"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1134/s0018151x10060131", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046009460", 
          "https://doi.org/10.1134/s0018151x10060131"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1039/c5an02676h", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046062384"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/jms.3633", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046284015"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.biortech.2011.02.057", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046474839"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1134/s0040601514060019", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047279866", 
          "https://doi.org/10.1134/s0040601514060019"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/bit.22033", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048369118"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.infrared.2016.05.028", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049589055"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.fuel.2013.11.019", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050963278"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ef201373m", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055478166"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ef201373m", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055478166"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1255/ejms.1442", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064519836"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1255/ejms.1442", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064519836"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00216-017-0197-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1083395744", 
          "https://doi.org/10.1007/s00216-017-0197-x"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00216-017-0197-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1083395744", 
          "https://doi.org/10.1007/s00216-017-0197-x"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ijhydene.2016.05.302", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1083695833"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1051/matecconf/201711210010", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1090332015"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1177/1469066717702648", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1090389829"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1177/1469066717702648", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1090389829"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1134/s0040601517090105", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1091327952", 
          "https://doi.org/10.1134/s0040601517090105"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2018-11", 
    "datePublishedReg": "2018-11-01", 
    "description": "The chemical composition of bio-oil obtained from Arthrospira platensis biomass via hydrothermal liquefaction at 240\u2013330\u00b0C has been studied with an elemental analysis and Fourier transform ultrahigh resolution mass spectrometry with ionic cyclotron resonance. An increase in temperature leads to an increased bio-oil yield, decreased oxygen, and an increase in the amount of carbon and nitrogen. The weighted Kendrick mass defect histogram showed for the first time that the main nitrogen-containing and oxygen-containing compounds are ON, O2N3, O3N2, ON2, N, and N2. The character of the change in their relative amount in bio-oil with a temperature change is also revealed. The Venn diagram shows the intersection of the sets of molecular formulas found in bio-oil samples obtained at different temperatures. The results may be used to optimize the hydrothermal liquefaction of microalgae and their subsequent processing into motor fuel.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1134/s0018151x18060263", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1135875", 
        "issn": [
          "0018-151X", 
          "0040-3644"
        ], 
        "name": "High Temperature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "6", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "56"
      }
    ], 
    "name": "Chemical Composition of Bio-oil Obtained via Hydrothermal Liquefaction of Arthrospira platensis Biomass", 
    "pagination": "915-920", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "413a37c4c0e42d6740f294cdea8b9df5de7179a7b9c129ff28e3e60887f090cf"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1134/s0018151x18060263"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1110893832"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1134/s0018151x18060263", 
      "https://app.dimensions.ai/details/publication/pub.1110893832"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T08:27", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000301_0000000301/records_32629_00000000.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1134%2FS0018151X18060263"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1134/s0018151x18060263'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1134/s0018151x18060263'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1134/s0018151x18060263'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1134/s0018151x18060263'


 

This table displays all metadata directly associated to this object as RDF triples.

205 TRIPLES      21 PREDICATES      53 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1134/s0018151x18060263 schema:about anzsrc-for:03
2 anzsrc-for:0306
3 schema:author N5805b37ef9414c75a49f1cbf9765e3db
4 schema:citation sg:pub.10.1007/s00216-017-0197-x
5 sg:pub.10.1134/s0018151x10060131
6 sg:pub.10.1134/s0018151x16020231
7 sg:pub.10.1134/s0040601514060019
8 sg:pub.10.1134/s0040601517090105
9 https://doi.org/10.1002/bit.22033
10 https://doi.org/10.1002/jms.3633
11 https://doi.org/10.1002/jms.3769
12 https://doi.org/10.1016/j.algal.2014.12.010
13 https://doi.org/10.1016/j.algal.2015.12.002
14 https://doi.org/10.1016/j.biombioe.2012.08.009
15 https://doi.org/10.1016/j.biortech.2011.02.057
16 https://doi.org/10.1016/j.biortech.2012.12.144
17 https://doi.org/10.1016/j.biortech.2013.07.123
18 https://doi.org/10.1016/j.enconman.2015.02.056
19 https://doi.org/10.1016/j.fuel.2013.11.019
20 https://doi.org/10.1016/j.ijhydene.2016.05.302
21 https://doi.org/10.1016/j.ijms.2016.03.012
22 https://doi.org/10.1016/j.infrared.2016.05.028
23 https://doi.org/10.1016/j.rser.2014.07.176
24 https://doi.org/10.1016/j.rser.2016.07.068
25 https://doi.org/10.1021/ef201373m
26 https://doi.org/10.1039/c5an02676h
27 https://doi.org/10.1051/matecconf/201711210010
28 https://doi.org/10.1177/1469066717702648
29 https://doi.org/10.1255/ejms.1442
30 schema:datePublished 2018-11
31 schema:datePublishedReg 2018-11-01
32 schema:description The chemical composition of bio-oil obtained from Arthrospira platensis biomass via hydrothermal liquefaction at 240–330°C has been studied with an elemental analysis and Fourier transform ultrahigh resolution mass spectrometry with ionic cyclotron resonance. An increase in temperature leads to an increased bio-oil yield, decreased oxygen, and an increase in the amount of carbon and nitrogen. The weighted Kendrick mass defect histogram showed for the first time that the main nitrogen-containing and oxygen-containing compounds are ON, O2N3, O3N2, ON2, N, and N2. The character of the change in their relative amount in bio-oil with a temperature change is also revealed. The Venn diagram shows the intersection of the sets of molecular formulas found in bio-oil samples obtained at different temperatures. The results may be used to optimize the hydrothermal liquefaction of microalgae and their subsequent processing into motor fuel.
33 schema:genre research_article
34 schema:inLanguage en
35 schema:isAccessibleForFree false
36 schema:isPartOf N19a0519e3d7344219c2e3b1789caac92
37 N66b719a428b94548a6b10204a0e37f5b
38 sg:journal.1135875
39 schema:name Chemical Composition of Bio-oil Obtained via Hydrothermal Liquefaction of Arthrospira platensis Biomass
40 schema:pagination 915-920
41 schema:productId N377d1d03fab844a58f4d0c7490062fc4
42 N4961d5a3664546f2a77d91c6ceafece7
43 Nf37cf94c3d6a4fa5b1ec30929c7df78f
44 schema:sameAs https://app.dimensions.ai/details/publication/pub.1110893832
45 https://doi.org/10.1134/s0018151x18060263
46 schema:sdDatePublished 2019-04-11T08:27
47 schema:sdLicense https://scigraph.springernature.com/explorer/license/
48 schema:sdPublisher N455b399a78d24d7fb64c87e78ccb77ae
49 schema:url https://link.springer.com/10.1134%2FS0018151X18060263
50 sgo:license sg:explorer/license/
51 sgo:sdDataset articles
52 rdf:type schema:ScholarlyArticle
53 N0bfe86cad07242328156ed0a9011d911 rdf:first sg:person.01035431534.19
54 rdf:rest Nbf69186b49a9422a8389036f094fec4e
55 N19a0519e3d7344219c2e3b1789caac92 schema:issueNumber 6
56 rdf:type schema:PublicationIssue
57 N29e9020e95fc4b1d88bc3c5e084b9be5 rdf:first sg:person.015222317550.17
58 rdf:rest N7ea264f0186e42288f1361c4ae56f0cf
59 N377d1d03fab844a58f4d0c7490062fc4 schema:name dimensions_id
60 schema:value pub.1110893832
61 rdf:type schema:PropertyValue
62 N455b399a78d24d7fb64c87e78ccb77ae schema:name Springer Nature - SN SciGraph project
63 rdf:type schema:Organization
64 N4961d5a3664546f2a77d91c6ceafece7 schema:name doi
65 schema:value 10.1134/s0018151x18060263
66 rdf:type schema:PropertyValue
67 N4abdca7bc82f4bbf9c611bf86f7d4c2f schema:affiliation https://www.grid.ac/institutes/grid.14476.30
68 schema:familyName Kiseleva
69 schema:givenName S. V.
70 rdf:type schema:Person
71 N5805b37ef9414c75a49f1cbf9765e3db rdf:first sg:person.011716266223.44
72 rdf:rest Naa08e556121f4fb0a9758b10034c7c26
73 N66b719a428b94548a6b10204a0e37f5b schema:volumeNumber 56
74 rdf:type schema:PublicationVolume
75 N73e46683ffc7434684f13e21739178d9 rdf:first N4abdca7bc82f4bbf9c611bf86f7d4c2f
76 rdf:rest N29e9020e95fc4b1d88bc3c5e084b9be5
77 N7ea264f0186e42288f1361c4ae56f0cf rdf:first Nbc21365c24b445b3bf4f3667b3534778
78 rdf:rest Nf713db49d83b4c99be302db7716cff6b
79 N8dd020f4d0c04c0aaea3df4f9a2d537a rdf:first sg:person.07712227157.50
80 rdf:rest rdf:nil
81 Naa08e556121f4fb0a9758b10034c7c26 rdf:first Nc391f0ffbd9841859865fbfafa01a0a8
82 rdf:rest N0bfe86cad07242328156ed0a9011d911
83 Nbc21365c24b445b3bf4f3667b3534778 schema:affiliation https://www.grid.ac/institutes/grid.454320.4
84 schema:familyName Nikolaev
85 schema:givenName E. N.
86 rdf:type schema:Person
87 Nbf69186b49a9422a8389036f094fec4e rdf:first sg:person.016601027243.79
88 rdf:rest N73e46683ffc7434684f13e21739178d9
89 Nc391f0ffbd9841859865fbfafa01a0a8 schema:affiliation https://www.grid.ac/institutes/grid.454320.4
90 schema:familyName Kostyukevich
91 schema:givenName Yu. I.
92 rdf:type schema:Person
93 Nf37cf94c3d6a4fa5b1ec30929c7df78f schema:name readcube_id
94 schema:value 413a37c4c0e42d6740f294cdea8b9df5de7179a7b9c129ff28e3e60887f090cf
95 rdf:type schema:PropertyValue
96 Nf713db49d83b4c99be302db7716cff6b rdf:first sg:person.015340161676.82
97 rdf:rest N8dd020f4d0c04c0aaea3df4f9a2d537a
98 anzsrc-for:03 schema:inDefinedTermSet anzsrc-for:
99 schema:name Chemical Sciences
100 rdf:type schema:DefinedTerm
101 anzsrc-for:0306 schema:inDefinedTermSet anzsrc-for:
102 schema:name Physical Chemistry (incl. Structural)
103 rdf:type schema:DefinedTerm
104 sg:journal.1135875 schema:issn 0018-151X
105 0040-3644
106 schema:name High Temperature
107 rdf:type schema:Periodical
108 sg:person.01035431534.19 schema:affiliation https://www.grid.ac/institutes/grid.454320.4
109 schema:familyName Vladimirov
110 schema:givenName G. N.
111 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01035431534.19
112 rdf:type schema:Person
113 sg:person.011716266223.44 schema:affiliation https://www.grid.ac/institutes/grid.435259.c
114 schema:familyName Vlaskin
115 schema:givenName M. S.
116 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011716266223.44
117 rdf:type schema:Person
118 sg:person.015222317550.17 schema:affiliation https://www.grid.ac/institutes/grid.435259.c
119 schema:familyName Grigorenko
120 schema:givenName A. V.
121 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015222317550.17
122 rdf:type schema:Person
123 sg:person.015340161676.82 schema:affiliation https://www.grid.ac/institutes/grid.435259.c
124 schema:familyName Popel
125 schema:givenName O. S.
126 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015340161676.82
127 rdf:type schema:Person
128 sg:person.016601027243.79 schema:affiliation https://www.grid.ac/institutes/grid.14476.30
129 schema:familyName Chernova
130 schema:givenName N. I.
131 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016601027243.79
132 rdf:type schema:Person
133 sg:person.07712227157.50 schema:affiliation https://www.grid.ac/institutes/grid.435259.c
134 schema:familyName Zhuk
135 schema:givenName A. Z.
136 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07712227157.50
137 rdf:type schema:Person
138 sg:pub.10.1007/s00216-017-0197-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1083395744
139 https://doi.org/10.1007/s00216-017-0197-x
140 rdf:type schema:CreativeWork
141 sg:pub.10.1134/s0018151x10060131 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046009460
142 https://doi.org/10.1134/s0018151x10060131
143 rdf:type schema:CreativeWork
144 sg:pub.10.1134/s0018151x16020231 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038867631
145 https://doi.org/10.1134/s0018151x16020231
146 rdf:type schema:CreativeWork
147 sg:pub.10.1134/s0040601514060019 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047279866
148 https://doi.org/10.1134/s0040601514060019
149 rdf:type schema:CreativeWork
150 sg:pub.10.1134/s0040601517090105 schema:sameAs https://app.dimensions.ai/details/publication/pub.1091327952
151 https://doi.org/10.1134/s0040601517090105
152 rdf:type schema:CreativeWork
153 https://doi.org/10.1002/bit.22033 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048369118
154 rdf:type schema:CreativeWork
155 https://doi.org/10.1002/jms.3633 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046284015
156 rdf:type schema:CreativeWork
157 https://doi.org/10.1002/jms.3769 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017712992
158 rdf:type schema:CreativeWork
159 https://doi.org/10.1016/j.algal.2014.12.010 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040366003
160 rdf:type schema:CreativeWork
161 https://doi.org/10.1016/j.algal.2015.12.002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038821353
162 rdf:type schema:CreativeWork
163 https://doi.org/10.1016/j.biombioe.2012.08.009 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027827333
164 rdf:type schema:CreativeWork
165 https://doi.org/10.1016/j.biortech.2011.02.057 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046474839
166 rdf:type schema:CreativeWork
167 https://doi.org/10.1016/j.biortech.2012.12.144 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027885565
168 rdf:type schema:CreativeWork
169 https://doi.org/10.1016/j.biortech.2013.07.123 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033339052
170 rdf:type schema:CreativeWork
171 https://doi.org/10.1016/j.enconman.2015.02.056 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031006481
172 rdf:type schema:CreativeWork
173 https://doi.org/10.1016/j.fuel.2013.11.019 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050963278
174 rdf:type schema:CreativeWork
175 https://doi.org/10.1016/j.ijhydene.2016.05.302 schema:sameAs https://app.dimensions.ai/details/publication/pub.1083695833
176 rdf:type schema:CreativeWork
177 https://doi.org/10.1016/j.ijms.2016.03.012 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030505028
178 rdf:type schema:CreativeWork
179 https://doi.org/10.1016/j.infrared.2016.05.028 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049589055
180 rdf:type schema:CreativeWork
181 https://doi.org/10.1016/j.rser.2014.07.176 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034350007
182 rdf:type schema:CreativeWork
183 https://doi.org/10.1016/j.rser.2016.07.068 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031786616
184 rdf:type schema:CreativeWork
185 https://doi.org/10.1021/ef201373m schema:sameAs https://app.dimensions.ai/details/publication/pub.1055478166
186 rdf:type schema:CreativeWork
187 https://doi.org/10.1039/c5an02676h schema:sameAs https://app.dimensions.ai/details/publication/pub.1046062384
188 rdf:type schema:CreativeWork
189 https://doi.org/10.1051/matecconf/201711210010 schema:sameAs https://app.dimensions.ai/details/publication/pub.1090332015
190 rdf:type schema:CreativeWork
191 https://doi.org/10.1177/1469066717702648 schema:sameAs https://app.dimensions.ai/details/publication/pub.1090389829
192 rdf:type schema:CreativeWork
193 https://doi.org/10.1255/ejms.1442 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064519836
194 rdf:type schema:CreativeWork
195 https://www.grid.ac/institutes/grid.14476.30 schema:alternateName Moscow State University
196 schema:name Joint Institute for High Temperatures, Russian Academy of Sciences, Moscow, Russia
197 Moscow State University, Moscow, Russia
198 rdf:type schema:Organization
199 https://www.grid.ac/institutes/grid.435259.c schema:alternateName Joint Institute for High Temperatures
200 schema:name Joint Institute for High Temperatures, Russian Academy of Sciences, Moscow, Russia
201 rdf:type schema:Organization
202 https://www.grid.ac/institutes/grid.454320.4 schema:alternateName Skolkovo Institute of Science and Technology
203 schema:name Joint Institute for High Temperatures, Russian Academy of Sciences, Moscow, Russia
204 Skolkovo Institute of Science and Technology, Skolkovo, Russia
205 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...