On the possibility of steady-state solutions application to describe a thermal state of parts fabricated by selective laser sintering View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2017-09

AUTHORS

R. M. Kakhramanov, A. G. Knyazeva, L. N. Rabinskiy, Yu. O. Solyaev

ABSTRACT

The temperature distribution during selective laser sintering of a thin vertical stainless-steel wall has been simulated. The object is grown by successive deposition and laser melting of powder layers. An adjoint problem, including calculation of temperature in the part and the surrounding operating region, has been solved for different manufacturingprocess parameters within the plane statement based on two different approaches. The first approach considers transient heat conduction problem for a layer-by-layer grown body. The height of the calculation domain increases at each calculation step due to the addition of a new powder layer and a short-term laser treatment is applied to the layer region. The duration of one calculation step is determined by the time between two laser passes. The temperature distribution found at each step is used as the initial conditions for calculations at the next step. The thermal state achieved by the object under consideration after 500 calculation steps (i.e., after deposition and melting of 500 layers) is compared with a corresponding solution to the quasi-steady-state problem, which is found for a final geometry of the part, provided that a constant time-averaged heat flux is set to be supplied to the synthesis region. By example of the simple geometry under consideration, a quasi-steady-state solution can provide a fairly good estimate of the macroscopic thermal state of the synthesized part. More... »

PAGES

731-736

Identifiers

URI

http://scigraph.springernature.com/pub.10.1134/s0018151x1705008x

DOI

http://dx.doi.org/10.1134/s0018151x1705008x

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1092225561


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0915", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Interdisciplinary Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Engineering", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Moscow Power Engineering Institute", 
          "id": "https://www.grid.ac/institutes/grid.77852.3f", 
          "name": [
            "Moscow Aviation Institute, National Research University, 125993, Moscow, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kakhramanov", 
        "givenName": "R. M.", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Institute of Strength Physics and Materials Science", 
          "id": "https://www.grid.ac/institutes/grid.467103.7", 
          "name": [
            "Tomsk Polytechnic University, 634050, Tomsk, Russia", 
            "Institute of Strength Physics and Materials Science, Siberian Branch, Russian Academy of Sciences, 634055, Tomsk, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Knyazeva", 
        "givenName": "A. G.", 
        "id": "sg:person.015605237135.34", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015605237135.34"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Moscow Power Engineering Institute", 
          "id": "https://www.grid.ac/institutes/grid.77852.3f", 
          "name": [
            "Moscow Aviation Institute, National Research University, 125993, Moscow, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Rabinskiy", 
        "givenName": "L. N.", 
        "id": "sg:person.012073703065.41", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012073703065.41"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Russian Academy of Sciences", 
          "id": "https://www.grid.ac/institutes/grid.4886.2", 
          "name": [
            "Moscow Aviation Institute, National Research University, 125993, Moscow, Russia", 
            "Institute of Applied Mechanics, Russian Academy of Sciences, 125040, Moscow, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Solyaev", 
        "givenName": "Yu. O.", 
        "id": "sg:person.014346511332.90", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014346511332.90"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1063/1.4937809", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012792219"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02667333", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015516438", 
          "https://doi.org/10.1007/bf02667333"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1134/s0018151x15040100", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016097574", 
          "https://doi.org/10.1134/s0018151x15040100"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1134/s0018151x16020036", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018308529", 
          "https://doi.org/10.1134/s0018151x16020036"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1134/s0018151x16020036", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018308529", 
          "https://doi.org/10.1134/s0018151x16020036"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.addma.2014.10.003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021705807"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1108/13552549910251846", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022485706"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.actamat.2016.02.014", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025565728"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.actamat.2016.02.014", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025565728"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.actamat.2016.02.014", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025565728"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.actamat.2016.02.014", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025565728"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00707-015-1430-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027937158", 
          "https://doi.org/10.1007/s00707-015-1430-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.addma.2015.12.005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037890756"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1115/1.4028669", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062153980"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1177/0954405414539494", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1063883060"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1177/0954405414539494", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1063883060"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.4028/www.scientific.net/kem.712.220", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1072098833"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2017-09", 
    "datePublishedReg": "2017-09-01", 
    "description": "The temperature distribution during selective laser sintering of a thin vertical stainless-steel wall has been simulated. The object is grown by successive deposition and laser melting of powder layers. An adjoint problem, including calculation of temperature in the part and the surrounding operating region, has been solved for different manufacturingprocess parameters within the plane statement based on two different approaches. The first approach considers transient heat conduction problem for a layer-by-layer grown body. The height of the calculation domain increases at each calculation step due to the addition of a new powder layer and a short-term laser treatment is applied to the layer region. The duration of one calculation step is determined by the time between two laser passes. The temperature distribution found at each step is used as the initial conditions for calculations at the next step. The thermal state achieved by the object under consideration after 500 calculation steps (i.e., after deposition and melting of 500 layers) is compared with a corresponding solution to the quasi-steady-state problem, which is found for a final geometry of the part, provided that a constant time-averaged heat flux is set to be supplied to the synthesis region. By example of the simple geometry under consideration, a quasi-steady-state solution can provide a fairly good estimate of the macroscopic thermal state of the synthesized part.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1134/s0018151x1705008x", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1135875", 
        "issn": [
          "0018-151X", 
          "0040-3644"
        ], 
        "name": "High Temperature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "5", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "55"
      }
    ], 
    "name": "On the possibility of steady-state solutions application to describe a thermal state of parts fabricated by selective laser sintering", 
    "pagination": "731-736", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "0825d25723bc8e05e94610a41fbee70f727f3078d26e78938e47f49be6e89fb9"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1134/s0018151x1705008x"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1092225561"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1134/s0018151x1705008x", 
      "https://app.dimensions.ai/details/publication/pub.1092225561"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T01:16", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8697_00000562.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1134%2FS0018151X1705008X"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1134/s0018151x1705008x'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1134/s0018151x1705008x'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1134/s0018151x1705008x'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1134/s0018151x1705008x'


 

This table displays all metadata directly associated to this object as RDF triples.

129 TRIPLES      21 PREDICATES      39 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1134/s0018151x1705008x schema:about anzsrc-for:09
2 anzsrc-for:0915
3 schema:author N503b362084b1440e965c7002531c25b5
4 schema:citation sg:pub.10.1007/bf02667333
5 sg:pub.10.1007/s00707-015-1430-3
6 sg:pub.10.1134/s0018151x15040100
7 sg:pub.10.1134/s0018151x16020036
8 https://doi.org/10.1016/j.actamat.2016.02.014
9 https://doi.org/10.1016/j.addma.2014.10.003
10 https://doi.org/10.1016/j.addma.2015.12.005
11 https://doi.org/10.1063/1.4937809
12 https://doi.org/10.1108/13552549910251846
13 https://doi.org/10.1115/1.4028669
14 https://doi.org/10.1177/0954405414539494
15 https://doi.org/10.4028/www.scientific.net/kem.712.220
16 schema:datePublished 2017-09
17 schema:datePublishedReg 2017-09-01
18 schema:description The temperature distribution during selective laser sintering of a thin vertical stainless-steel wall has been simulated. The object is grown by successive deposition and laser melting of powder layers. An adjoint problem, including calculation of temperature in the part and the surrounding operating region, has been solved for different manufacturingprocess parameters within the plane statement based on two different approaches. The first approach considers transient heat conduction problem for a layer-by-layer grown body. The height of the calculation domain increases at each calculation step due to the addition of a new powder layer and a short-term laser treatment is applied to the layer region. The duration of one calculation step is determined by the time between two laser passes. The temperature distribution found at each step is used as the initial conditions for calculations at the next step. The thermal state achieved by the object under consideration after 500 calculation steps (i.e., after deposition and melting of 500 layers) is compared with a corresponding solution to the quasi-steady-state problem, which is found for a final geometry of the part, provided that a constant time-averaged heat flux is set to be supplied to the synthesis region. By example of the simple geometry under consideration, a quasi-steady-state solution can provide a fairly good estimate of the macroscopic thermal state of the synthesized part.
19 schema:genre research_article
20 schema:inLanguage en
21 schema:isAccessibleForFree false
22 schema:isPartOf Nd16d263e3ff64ed28955ed8aedd52f15
23 Nebaaf202ef2b46388310f66328311977
24 sg:journal.1135875
25 schema:name On the possibility of steady-state solutions application to describe a thermal state of parts fabricated by selective laser sintering
26 schema:pagination 731-736
27 schema:productId N1e0dffe936114dce891b05528e99af90
28 Nae184f0285a84fedad4225475625d745
29 Neaaf8a03e2a64c3b897e2312de17e2d0
30 schema:sameAs https://app.dimensions.ai/details/publication/pub.1092225561
31 https://doi.org/10.1134/s0018151x1705008x
32 schema:sdDatePublished 2019-04-11T01:16
33 schema:sdLicense https://scigraph.springernature.com/explorer/license/
34 schema:sdPublisher N1790b82a7fd64926b45e15c61fde93f6
35 schema:url https://link.springer.com/10.1134%2FS0018151X1705008X
36 sgo:license sg:explorer/license/
37 sgo:sdDataset articles
38 rdf:type schema:ScholarlyArticle
39 N1790b82a7fd64926b45e15c61fde93f6 schema:name Springer Nature - SN SciGraph project
40 rdf:type schema:Organization
41 N1e0dffe936114dce891b05528e99af90 schema:name dimensions_id
42 schema:value pub.1092225561
43 rdf:type schema:PropertyValue
44 N28ef94036ae04201b055e855ef96ba68 rdf:first sg:person.015605237135.34
45 rdf:rest Na3f24670d5e3432aa52b4dfdd6ebe7d7
46 N503b362084b1440e965c7002531c25b5 rdf:first N61790eccfa78446cb3eafa3ad07990e3
47 rdf:rest N28ef94036ae04201b055e855ef96ba68
48 N61790eccfa78446cb3eafa3ad07990e3 schema:affiliation https://www.grid.ac/institutes/grid.77852.3f
49 schema:familyName Kakhramanov
50 schema:givenName R. M.
51 rdf:type schema:Person
52 Na3f24670d5e3432aa52b4dfdd6ebe7d7 rdf:first sg:person.012073703065.41
53 rdf:rest Nb09bdd5c1f554ad586f1edba3268a9ed
54 Nae184f0285a84fedad4225475625d745 schema:name readcube_id
55 schema:value 0825d25723bc8e05e94610a41fbee70f727f3078d26e78938e47f49be6e89fb9
56 rdf:type schema:PropertyValue
57 Nb09bdd5c1f554ad586f1edba3268a9ed rdf:first sg:person.014346511332.90
58 rdf:rest rdf:nil
59 Nd16d263e3ff64ed28955ed8aedd52f15 schema:volumeNumber 55
60 rdf:type schema:PublicationVolume
61 Neaaf8a03e2a64c3b897e2312de17e2d0 schema:name doi
62 schema:value 10.1134/s0018151x1705008x
63 rdf:type schema:PropertyValue
64 Nebaaf202ef2b46388310f66328311977 schema:issueNumber 5
65 rdf:type schema:PublicationIssue
66 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
67 schema:name Engineering
68 rdf:type schema:DefinedTerm
69 anzsrc-for:0915 schema:inDefinedTermSet anzsrc-for:
70 schema:name Interdisciplinary Engineering
71 rdf:type schema:DefinedTerm
72 sg:journal.1135875 schema:issn 0018-151X
73 0040-3644
74 schema:name High Temperature
75 rdf:type schema:Periodical
76 sg:person.012073703065.41 schema:affiliation https://www.grid.ac/institutes/grid.77852.3f
77 schema:familyName Rabinskiy
78 schema:givenName L. N.
79 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012073703065.41
80 rdf:type schema:Person
81 sg:person.014346511332.90 schema:affiliation https://www.grid.ac/institutes/grid.4886.2
82 schema:familyName Solyaev
83 schema:givenName Yu. O.
84 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014346511332.90
85 rdf:type schema:Person
86 sg:person.015605237135.34 schema:affiliation https://www.grid.ac/institutes/grid.467103.7
87 schema:familyName Knyazeva
88 schema:givenName A. G.
89 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015605237135.34
90 rdf:type schema:Person
91 sg:pub.10.1007/bf02667333 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015516438
92 https://doi.org/10.1007/bf02667333
93 rdf:type schema:CreativeWork
94 sg:pub.10.1007/s00707-015-1430-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027937158
95 https://doi.org/10.1007/s00707-015-1430-3
96 rdf:type schema:CreativeWork
97 sg:pub.10.1134/s0018151x15040100 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016097574
98 https://doi.org/10.1134/s0018151x15040100
99 rdf:type schema:CreativeWork
100 sg:pub.10.1134/s0018151x16020036 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018308529
101 https://doi.org/10.1134/s0018151x16020036
102 rdf:type schema:CreativeWork
103 https://doi.org/10.1016/j.actamat.2016.02.014 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025565728
104 rdf:type schema:CreativeWork
105 https://doi.org/10.1016/j.addma.2014.10.003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021705807
106 rdf:type schema:CreativeWork
107 https://doi.org/10.1016/j.addma.2015.12.005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037890756
108 rdf:type schema:CreativeWork
109 https://doi.org/10.1063/1.4937809 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012792219
110 rdf:type schema:CreativeWork
111 https://doi.org/10.1108/13552549910251846 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022485706
112 rdf:type schema:CreativeWork
113 https://doi.org/10.1115/1.4028669 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062153980
114 rdf:type schema:CreativeWork
115 https://doi.org/10.1177/0954405414539494 schema:sameAs https://app.dimensions.ai/details/publication/pub.1063883060
116 rdf:type schema:CreativeWork
117 https://doi.org/10.4028/www.scientific.net/kem.712.220 schema:sameAs https://app.dimensions.ai/details/publication/pub.1072098833
118 rdf:type schema:CreativeWork
119 https://www.grid.ac/institutes/grid.467103.7 schema:alternateName Institute of Strength Physics and Materials Science
120 schema:name Institute of Strength Physics and Materials Science, Siberian Branch, Russian Academy of Sciences, 634055, Tomsk, Russia
121 Tomsk Polytechnic University, 634050, Tomsk, Russia
122 rdf:type schema:Organization
123 https://www.grid.ac/institutes/grid.4886.2 schema:alternateName Russian Academy of Sciences
124 schema:name Institute of Applied Mechanics, Russian Academy of Sciences, 125040, Moscow, Russia
125 Moscow Aviation Institute, National Research University, 125993, Moscow, Russia
126 rdf:type schema:Organization
127 https://www.grid.ac/institutes/grid.77852.3f schema:alternateName Moscow Power Engineering Institute
128 schema:name Moscow Aviation Institute, National Research University, 125993, Moscow, Russia
129 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...