Problems of dynamic thermoelasticity on the basis of an analytical solution of the hyperbolic heat conduction equation View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2015-07

AUTHORS

I. V. Kudinov, V. A. Kudinov

ABSTRACT

Using the hyperbolic heat conduction equation found from the condition of heat flow relaxation and the temperature gradient in the formula of the Fourier law, an exact analytical solution of the boundary problem of dynamic thermoelasticity for an infinite plate with symmetric boundary conditions of the first kind is obtained. It is shown that stresses change discontinuously in time with a periodic change in their sign at every point of the space. Under a sustained character, the process of changes in stresses occurs in the form of a string fixed at both ends and having kinks (stress jumps) moving along the spatial variable in time. More... »

PAGES

521-525

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1134/s0018151x15030116

DOI

http://dx.doi.org/10.1134/s0018151x15030116

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1006676361


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/02", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0202", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Atomic, Molecular, Nuclear, Particle and Plasma Physics", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Samara State Technical University, Samara, Russia", 
          "id": "http://www.grid.ac/institutes/grid.445792.9", 
          "name": [
            "Samara State Technical University, Samara, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kudinov", 
        "givenName": "I. V.", 
        "id": "sg:person.013117131562.63", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013117131562.63"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Samara State Technical University, Samara, Russia", 
          "id": "http://www.grid.ac/institutes/grid.445792.9", 
          "name": [
            "Samara State Technical University, Samara, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kudinov", 
        "givenName": "V. A.", 
        "id": "sg:person.014602635070.00", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014602635070.00"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1134/s0018151x1204013x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038114830", 
          "https://doi.org/10.1134/s0018151x1204013x"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2015-07", 
    "datePublishedReg": "2015-07-01", 
    "description": "Using the hyperbolic heat conduction equation found from the condition of heat flow relaxation and the temperature gradient in the formula of the Fourier law, an exact analytical solution of the boundary problem of dynamic thermoelasticity for an infinite plate with symmetric boundary conditions of the first kind is obtained. It is shown that stresses change discontinuously in time with a periodic change in their sign at every point of the space. Under a sustained character, the process of changes in stresses occurs in the form of a string fixed at both ends and having kinks (stress jumps) moving along the spatial variable in time.", 
    "genre": "article", 
    "id": "sg:pub.10.1134/s0018151x15030116", 
    "inLanguage": "en", 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1135875", 
        "issn": [
          "0018-151X", 
          "0040-3644"
        ], 
        "name": "High Temperature", 
        "publisher": "Pleiades Publishing", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "4", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "53"
      }
    ], 
    "keywords": [
      "hyperbolic heat conduction equation", 
      "heat conduction equation", 
      "conduction equation", 
      "dynamic thermoelasticity", 
      "analytical solution", 
      "symmetric boundary conditions", 
      "Fourier's law", 
      "temperature gradient", 
      "exact analytical solution", 
      "boundary conditions", 
      "sustained character", 
      "infinite plate", 
      "flow relaxation", 
      "boundary problem", 
      "thermoelasticity", 
      "periodic changes", 
      "stress", 
      "equations", 
      "solution", 
      "plate", 
      "first kind", 
      "spatial variables", 
      "conditions", 
      "gradient", 
      "process", 
      "problem", 
      "time", 
      "law", 
      "kind", 
      "kinks", 
      "relaxation", 
      "formula", 
      "point", 
      "changes", 
      "space", 
      "variables", 
      "basis", 
      "end", 
      "form", 
      "character", 
      "strings", 
      "signs", 
      "process of change", 
      "heat flow relaxation"
    ], 
    "name": "Problems of dynamic thermoelasticity on the basis of an analytical solution of the hyperbolic heat conduction equation", 
    "pagination": "521-525", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1006676361"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1134/s0018151x15030116"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1134/s0018151x15030116", 
      "https://app.dimensions.ai/details/publication/pub.1006676361"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-01-01T18:39", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220101/entities/gbq_results/article/article_682.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1134/s0018151x15030116"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1134/s0018151x15030116'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1134/s0018151x15030116'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1134/s0018151x15030116'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1134/s0018151x15030116'


 

This table displays all metadata directly associated to this object as RDF triples.

113 TRIPLES      22 PREDICATES      71 URIs      62 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1134/s0018151x15030116 schema:about anzsrc-for:02
2 anzsrc-for:0202
3 schema:author Ne72f0c6af80243f6a7e7ebf7603c4d57
4 schema:citation sg:pub.10.1134/s0018151x1204013x
5 schema:datePublished 2015-07
6 schema:datePublishedReg 2015-07-01
7 schema:description Using the hyperbolic heat conduction equation found from the condition of heat flow relaxation and the temperature gradient in the formula of the Fourier law, an exact analytical solution of the boundary problem of dynamic thermoelasticity for an infinite plate with symmetric boundary conditions of the first kind is obtained. It is shown that stresses change discontinuously in time with a periodic change in their sign at every point of the space. Under a sustained character, the process of changes in stresses occurs in the form of a string fixed at both ends and having kinks (stress jumps) moving along the spatial variable in time.
8 schema:genre article
9 schema:inLanguage en
10 schema:isAccessibleForFree false
11 schema:isPartOf N1ad96fd0fc4042bca25d70fe7847232e
12 N8abb994597fe4850ad509dbe69277459
13 sg:journal.1135875
14 schema:keywords Fourier's law
15 analytical solution
16 basis
17 boundary conditions
18 boundary problem
19 changes
20 character
21 conditions
22 conduction equation
23 dynamic thermoelasticity
24 end
25 equations
26 exact analytical solution
27 first kind
28 flow relaxation
29 form
30 formula
31 gradient
32 heat conduction equation
33 heat flow relaxation
34 hyperbolic heat conduction equation
35 infinite plate
36 kind
37 kinks
38 law
39 periodic changes
40 plate
41 point
42 problem
43 process
44 process of change
45 relaxation
46 signs
47 solution
48 space
49 spatial variables
50 stress
51 strings
52 sustained character
53 symmetric boundary conditions
54 temperature gradient
55 thermoelasticity
56 time
57 variables
58 schema:name Problems of dynamic thermoelasticity on the basis of an analytical solution of the hyperbolic heat conduction equation
59 schema:pagination 521-525
60 schema:productId N0c90903f91ce4df78062093b7be163a9
61 N33789f299915448f82f2172bf2581d6a
62 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006676361
63 https://doi.org/10.1134/s0018151x15030116
64 schema:sdDatePublished 2022-01-01T18:39
65 schema:sdLicense https://scigraph.springernature.com/explorer/license/
66 schema:sdPublisher N980cac07fd264042a708cb195881e14a
67 schema:url https://doi.org/10.1134/s0018151x15030116
68 sgo:license sg:explorer/license/
69 sgo:sdDataset articles
70 rdf:type schema:ScholarlyArticle
71 N0c90903f91ce4df78062093b7be163a9 schema:name dimensions_id
72 schema:value pub.1006676361
73 rdf:type schema:PropertyValue
74 N10ee7a1b92934b5bac3d666735881601 rdf:first sg:person.014602635070.00
75 rdf:rest rdf:nil
76 N1ad96fd0fc4042bca25d70fe7847232e schema:volumeNumber 53
77 rdf:type schema:PublicationVolume
78 N33789f299915448f82f2172bf2581d6a schema:name doi
79 schema:value 10.1134/s0018151x15030116
80 rdf:type schema:PropertyValue
81 N8abb994597fe4850ad509dbe69277459 schema:issueNumber 4
82 rdf:type schema:PublicationIssue
83 N980cac07fd264042a708cb195881e14a schema:name Springer Nature - SN SciGraph project
84 rdf:type schema:Organization
85 Ne72f0c6af80243f6a7e7ebf7603c4d57 rdf:first sg:person.013117131562.63
86 rdf:rest N10ee7a1b92934b5bac3d666735881601
87 anzsrc-for:02 schema:inDefinedTermSet anzsrc-for:
88 schema:name Physical Sciences
89 rdf:type schema:DefinedTerm
90 anzsrc-for:0202 schema:inDefinedTermSet anzsrc-for:
91 schema:name Atomic, Molecular, Nuclear, Particle and Plasma Physics
92 rdf:type schema:DefinedTerm
93 sg:journal.1135875 schema:issn 0018-151X
94 0040-3644
95 schema:name High Temperature
96 schema:publisher Pleiades Publishing
97 rdf:type schema:Periodical
98 sg:person.013117131562.63 schema:affiliation grid-institutes:grid.445792.9
99 schema:familyName Kudinov
100 schema:givenName I. V.
101 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013117131562.63
102 rdf:type schema:Person
103 sg:person.014602635070.00 schema:affiliation grid-institutes:grid.445792.9
104 schema:familyName Kudinov
105 schema:givenName V. A.
106 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014602635070.00
107 rdf:type schema:Person
108 sg:pub.10.1134/s0018151x1204013x schema:sameAs https://app.dimensions.ai/details/publication/pub.1038114830
109 https://doi.org/10.1134/s0018151x1204013x
110 rdf:type schema:CreativeWork
111 grid-institutes:grid.445792.9 schema:alternateName Samara State Technical University, Samara, Russia
112 schema:name Samara State Technical University, Samara, Russia
113 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...