Studying heat conduction taking into account the finite rate of heat propagation View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2013-03

AUTHORS

V. A. Kudinov, I. V. Kudinov

ABSTRACT

By introducing relaxation corrections to the heat flux and to the temperature gradient, hyperbolic equations of heat conduction are obtained involving the third and fourth derivatives over the spatial coordinate and time (mixed derivatives). The obtained formula for the heat flux that is used in obtaining the aforementioned hyperbolic equations coincides with the formula by Lykov, which is derived from the Onsager generalized system equations using the hypothesis about the finite diffusion rate of heat and mass. Investigations of the obtained analytic solutions to the hyperbolic equations allow us to conclude about the temperature discontinuities in the vicinity of the boundary of the space coordinate where the boundary condition of the first kind is given. This testifies that instantaneous heating (cooling) of the body up to the temperature of the environment is impossible in no circumstances of external heat exchange. More... »

PAGES

268-276

Identifiers

URI

http://scigraph.springernature.com/pub.10.1134/s0018151x1204013x

DOI

http://dx.doi.org/10.1134/s0018151x1204013x

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1038114830


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/02", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0202", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Atomic, Molecular, Nuclear, Particle and Plasma Physics", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Samara State Technical University, Sterlitamak, Russia", 
          "id": "http://www.grid.ac/institutes/grid.445792.9", 
          "name": [
            "Samara State Technical University, Sterlitamak, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kudinov", 
        "givenName": "V. A.", 
        "id": "sg:person.014602635070.00", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014602635070.00"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Samara State Technical University, Sterlitamak, Russia", 
          "id": "http://www.grid.ac/institutes/grid.445792.9", 
          "name": [
            "Samara State Technical University, Sterlitamak, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kudinov", 
        "givenName": "I. V.", 
        "id": "sg:person.013117131562.63", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013117131562.63"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1134/s0018151x12010105", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048230448", 
          "https://doi.org/10.1134/s0018151x12010105"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-642-97671-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018509877", 
          "https://doi.org/10.1007/978-3-642-97671-1"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2013-03", 
    "datePublishedReg": "2013-03-01", 
    "description": "By introducing relaxation corrections to the heat flux and to the temperature gradient, hyperbolic equations of heat conduction are obtained involving the third and fourth derivatives over the spatial coordinate and time (mixed derivatives). The obtained formula for the heat flux that is used in obtaining the aforementioned hyperbolic equations coincides with the formula by Lykov, which is derived from the Onsager generalized system equations using the hypothesis about the finite diffusion rate of heat and mass. Investigations of the obtained analytic solutions to the hyperbolic equations allow us to conclude about the temperature discontinuities in the vicinity of the boundary of the space coordinate where the boundary condition of the first kind is given. This testifies that instantaneous heating (cooling) of the body up to the temperature of the environment is impossible in no circumstances of external heat exchange.", 
    "genre": "article", 
    "id": "sg:pub.10.1134/s0018151x1204013x", 
    "inLanguage": "en", 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1135875", 
        "issn": [
          "0018-151X", 
          "0040-3644"
        ], 
        "name": "High Temperature", 
        "publisher": "Pleiades Publishing", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "2", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "51"
      }
    ], 
    "keywords": [
      "heat flux", 
      "heat conduction", 
      "external heat exchange", 
      "heat exchange", 
      "heat propagation", 
      "temperature gradient", 
      "temperature discontinuity", 
      "instantaneous heating", 
      "boundary conditions", 
      "diffusion rate", 
      "system equations", 
      "finite diffusion rate", 
      "conduction", 
      "analytic solution", 
      "flux", 
      "spatial coordinates", 
      "hyperbolic equations", 
      "equations", 
      "heat", 
      "heating", 
      "propagation", 
      "first kind", 
      "temperature", 
      "finite rate", 
      "boundaries", 
      "gradient", 
      "relaxation corrections", 
      "discontinuities", 
      "vicinity", 
      "solution", 
      "conditions", 
      "investigation", 
      "formula", 
      "rate", 
      "coordinates", 
      "kind", 
      "fourth derivative", 
      "account", 
      "environment", 
      "time", 
      "mass", 
      "correction", 
      "space", 
      "body", 
      "exchange", 
      "circumstances", 
      "derivatives", 
      "hypothesis", 
      "aforementioned hyperbolic equations", 
      "Lykov", 
      "Onsager generalized system equations", 
      "generalized system equations"
    ], 
    "name": "Studying heat conduction taking into account the finite rate of heat propagation", 
    "pagination": "268-276", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1038114830"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1134/s0018151x1204013x"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1134/s0018151x1204013x", 
      "https://app.dimensions.ai/details/publication/pub.1038114830"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2021-11-01T18:20", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20211101/entities/gbq_results/article/article_602.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1134/s0018151x1204013x"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1134/s0018151x1204013x'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1134/s0018151x1204013x'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1134/s0018151x1204013x'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1134/s0018151x1204013x'


 

This table displays all metadata directly associated to this object as RDF triples.

125 TRIPLES      22 PREDICATES      80 URIs      70 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1134/s0018151x1204013x schema:about anzsrc-for:02
2 anzsrc-for:0202
3 schema:author Nce4b4022b442452caf26473649da804d
4 schema:citation sg:pub.10.1007/978-3-642-97671-1
5 sg:pub.10.1134/s0018151x12010105
6 schema:datePublished 2013-03
7 schema:datePublishedReg 2013-03-01
8 schema:description By introducing relaxation corrections to the heat flux and to the temperature gradient, hyperbolic equations of heat conduction are obtained involving the third and fourth derivatives over the spatial coordinate and time (mixed derivatives). The obtained formula for the heat flux that is used in obtaining the aforementioned hyperbolic equations coincides with the formula by Lykov, which is derived from the Onsager generalized system equations using the hypothesis about the finite diffusion rate of heat and mass. Investigations of the obtained analytic solutions to the hyperbolic equations allow us to conclude about the temperature discontinuities in the vicinity of the boundary of the space coordinate where the boundary condition of the first kind is given. This testifies that instantaneous heating (cooling) of the body up to the temperature of the environment is impossible in no circumstances of external heat exchange.
9 schema:genre article
10 schema:inLanguage en
11 schema:isAccessibleForFree false
12 schema:isPartOf N066002e4bb58499d89f9dc8c923cf69a
13 N843312be068c4c548e6d1f9fbd2ccd78
14 sg:journal.1135875
15 schema:keywords Lykov
16 Onsager generalized system equations
17 account
18 aforementioned hyperbolic equations
19 analytic solution
20 body
21 boundaries
22 boundary conditions
23 circumstances
24 conditions
25 conduction
26 coordinates
27 correction
28 derivatives
29 diffusion rate
30 discontinuities
31 environment
32 equations
33 exchange
34 external heat exchange
35 finite diffusion rate
36 finite rate
37 first kind
38 flux
39 formula
40 fourth derivative
41 generalized system equations
42 gradient
43 heat
44 heat conduction
45 heat exchange
46 heat flux
47 heat propagation
48 heating
49 hyperbolic equations
50 hypothesis
51 instantaneous heating
52 investigation
53 kind
54 mass
55 propagation
56 rate
57 relaxation corrections
58 solution
59 space
60 spatial coordinates
61 system equations
62 temperature
63 temperature discontinuity
64 temperature gradient
65 time
66 vicinity
67 schema:name Studying heat conduction taking into account the finite rate of heat propagation
68 schema:pagination 268-276
69 schema:productId N308dd937bee0424189a0dac203c56f62
70 N954595d890ce4a87a49e896c4b94c6f1
71 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038114830
72 https://doi.org/10.1134/s0018151x1204013x
73 schema:sdDatePublished 2021-11-01T18:20
74 schema:sdLicense https://scigraph.springernature.com/explorer/license/
75 schema:sdPublisher Nf12017215d294b379db41bb50035b7fd
76 schema:url https://doi.org/10.1134/s0018151x1204013x
77 sgo:license sg:explorer/license/
78 sgo:sdDataset articles
79 rdf:type schema:ScholarlyArticle
80 N066002e4bb58499d89f9dc8c923cf69a schema:issueNumber 2
81 rdf:type schema:PublicationIssue
82 N308dd937bee0424189a0dac203c56f62 schema:name dimensions_id
83 schema:value pub.1038114830
84 rdf:type schema:PropertyValue
85 N843312be068c4c548e6d1f9fbd2ccd78 schema:volumeNumber 51
86 rdf:type schema:PublicationVolume
87 N954595d890ce4a87a49e896c4b94c6f1 schema:name doi
88 schema:value 10.1134/s0018151x1204013x
89 rdf:type schema:PropertyValue
90 Nc45c6bf15d3d4709b473accc1e2591f0 rdf:first sg:person.013117131562.63
91 rdf:rest rdf:nil
92 Nce4b4022b442452caf26473649da804d rdf:first sg:person.014602635070.00
93 rdf:rest Nc45c6bf15d3d4709b473accc1e2591f0
94 Nf12017215d294b379db41bb50035b7fd schema:name Springer Nature - SN SciGraph project
95 rdf:type schema:Organization
96 anzsrc-for:02 schema:inDefinedTermSet anzsrc-for:
97 schema:name Physical Sciences
98 rdf:type schema:DefinedTerm
99 anzsrc-for:0202 schema:inDefinedTermSet anzsrc-for:
100 schema:name Atomic, Molecular, Nuclear, Particle and Plasma Physics
101 rdf:type schema:DefinedTerm
102 sg:journal.1135875 schema:issn 0018-151X
103 0040-3644
104 schema:name High Temperature
105 schema:publisher Pleiades Publishing
106 rdf:type schema:Periodical
107 sg:person.013117131562.63 schema:affiliation grid-institutes:grid.445792.9
108 schema:familyName Kudinov
109 schema:givenName I. V.
110 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013117131562.63
111 rdf:type schema:Person
112 sg:person.014602635070.00 schema:affiliation grid-institutes:grid.445792.9
113 schema:familyName Kudinov
114 schema:givenName V. A.
115 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014602635070.00
116 rdf:type schema:Person
117 sg:pub.10.1007/978-3-642-97671-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018509877
118 https://doi.org/10.1007/978-3-642-97671-1
119 rdf:type schema:CreativeWork
120 sg:pub.10.1134/s0018151x12010105 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048230448
121 https://doi.org/10.1134/s0018151x12010105
122 rdf:type schema:CreativeWork
123 grid-institutes:grid.445792.9 schema:alternateName Samara State Technical University, Sterlitamak, Russia
124 schema:name Samara State Technical University, Sterlitamak, Russia
125 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...