Heat Exchange in a Cylindrical Channel with Stabilized Laminar Fluid Flow View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2018-12

AUTHORS

A. V. Eremin, V. A. Kudinov, E. V. Stefanyuk

ABSTRACT

Based on the determination of the temperature perturbation front and additional boundary conditions, an approximate analytical solution is obtained for the stationary heat exchange problem when fluid flows in a cylindrical channel with a constant parabolic velocity profile (the Gretz–Nusselt problem), which allows us to investigate the temperature distribution in the fluid in a wide range of distances from the pipe inlet, including small and very small distances. Based on the data of numerical calculations of temperature change at a certain value of the spatial variable using the solution obtained by solving the inverse heat conduction problem, the Peclet number was found (in the case where it is unknown in the solution obtained), from which we can determine the velocity profile and the flow rate of the liquid. Graphs of the distribution of isotherms and the their velocities in space over time are plotted. More... »

PAGES

s29-s39

Identifiers

URI

http://scigraph.springernature.com/pub.10.1134/s0015462818040171

DOI

http://dx.doi.org/10.1134/s0015462818040171

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1112392175


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0915", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Interdisciplinary Engineering", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Samara State Technical University, Samara, Russia", 
          "id": "http://www.grid.ac/institutes/grid.445792.9", 
          "name": [
            "Samara State Technical University, Samara, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Eremin", 
        "givenName": "A. V.", 
        "id": "sg:person.014424512265.37", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014424512265.37"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Samara State Technical University, Samara, Russia", 
          "id": "http://www.grid.ac/institutes/grid.445792.9", 
          "name": [
            "Samara State Technical University, Samara, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kudinov", 
        "givenName": "V. A.", 
        "id": "sg:person.014602635070.00", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014602635070.00"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Samara State Technical University, Samara, Russia", 
          "id": "http://www.grid.ac/institutes/grid.445792.9", 
          "name": [
            "Samara State Technical University, Samara, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Stefanyuk", 
        "givenName": "E. V.", 
        "id": "sg:person.010637046537.80", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010637046537.80"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1134/s0018151x09020163", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006204753", 
          "https://doi.org/10.1134/s0018151x09020163"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10891-007-0136-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031129244", 
          "https://doi.org/10.1007/s10891-007-0136-3"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2018-12", 
    "datePublishedReg": "2018-12-01", 
    "description": "Based on the determination of the temperature perturbation front and additional boundary conditions, an approximate analytical solution is obtained for the stationary heat exchange problem when fluid flows in a cylindrical channel with a constant parabolic velocity profile (the Gretz\u2013Nusselt problem), which allows us to investigate the temperature distribution in the fluid in a wide range of distances from the pipe inlet, including small and very small distances. Based on the data of numerical calculations of temperature change at a certain value of the spatial variable using the solution obtained by solving the inverse heat conduction problem, the Peclet number was found (in the case where it is unknown in the solution obtained), from which we can determine the velocity profile and the flow rate of the liquid. Graphs of the distribution of isotherms and the their velocities in space over time are plotted.", 
    "genre": "article", 
    "id": "sg:pub.10.1134/s0015462818040171", 
    "inLanguage": "en", 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1297462", 
        "issn": [
          "0015-4628", 
          "1573-8507"
        ], 
        "name": "Fluid Dynamics", 
        "publisher": "Pleiades Publishing", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "Suppl 1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "53"
      }
    ], 
    "keywords": [
      "velocity profiles", 
      "cylindrical channel", 
      "inverse heat conduction problem", 
      "parabolic velocity profile", 
      "heat exchange problem", 
      "distribution of isotherms", 
      "heat conduction problem", 
      "laminar fluid flow", 
      "pipe inlet", 
      "temperature distribution", 
      "heat exchange", 
      "approximate analytical solution", 
      "Peclet number", 
      "fluid flow", 
      "additional boundary conditions", 
      "conduction problem", 
      "flow rate", 
      "boundary conditions", 
      "analytical solution", 
      "numerical calculations", 
      "temperature perturbation front", 
      "temperature changes", 
      "perturbation front", 
      "certain value", 
      "inlet", 
      "velocity", 
      "wide range", 
      "small distances", 
      "solution", 
      "liquid", 
      "flow", 
      "isotherms", 
      "spatial variables", 
      "front", 
      "distribution", 
      "fluid", 
      "channels", 
      "profile", 
      "problem", 
      "conditions", 
      "distance", 
      "range", 
      "calculations", 
      "exchange problem", 
      "determination", 
      "values", 
      "rate", 
      "time", 
      "space", 
      "exchange", 
      "variables", 
      "data", 
      "number", 
      "changes", 
      "graph", 
      "stationary heat exchange problem", 
      "constant parabolic velocity profile"
    ], 
    "name": "Heat Exchange in a Cylindrical Channel with Stabilized Laminar Fluid Flow", 
    "pagination": "s29-s39", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1112392175"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1134/s0015462818040171"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1134/s0015462818040171", 
      "https://app.dimensions.ai/details/publication/pub.1112392175"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2021-12-01T19:41", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20211201/entities/gbq_results/article/article_770.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1134/s0015462818040171"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1134/s0015462818040171'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1134/s0015462818040171'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1134/s0015462818040171'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1134/s0015462818040171'


 

This table displays all metadata directly associated to this object as RDF triples.

137 TRIPLES      22 PREDICATES      85 URIs      75 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1134/s0015462818040171 schema:about anzsrc-for:09
2 anzsrc-for:0915
3 schema:author N7eed5c35686e491a8846d342c00ad981
4 schema:citation sg:pub.10.1007/s10891-007-0136-3
5 sg:pub.10.1134/s0018151x09020163
6 schema:datePublished 2018-12
7 schema:datePublishedReg 2018-12-01
8 schema:description Based on the determination of the temperature perturbation front and additional boundary conditions, an approximate analytical solution is obtained for the stationary heat exchange problem when fluid flows in a cylindrical channel with a constant parabolic velocity profile (the Gretz–Nusselt problem), which allows us to investigate the temperature distribution in the fluid in a wide range of distances from the pipe inlet, including small and very small distances. Based on the data of numerical calculations of temperature change at a certain value of the spatial variable using the solution obtained by solving the inverse heat conduction problem, the Peclet number was found (in the case where it is unknown in the solution obtained), from which we can determine the velocity profile and the flow rate of the liquid. Graphs of the distribution of isotherms and the their velocities in space over time are plotted.
9 schema:genre article
10 schema:inLanguage en
11 schema:isAccessibleForFree false
12 schema:isPartOf N81ba4a1cc7d74ccdae9718584bd44770
13 Nb05667b6e6b347d6bc66f3b949634da3
14 sg:journal.1297462
15 schema:keywords Peclet number
16 additional boundary conditions
17 analytical solution
18 approximate analytical solution
19 boundary conditions
20 calculations
21 certain value
22 changes
23 channels
24 conditions
25 conduction problem
26 constant parabolic velocity profile
27 cylindrical channel
28 data
29 determination
30 distance
31 distribution
32 distribution of isotherms
33 exchange
34 exchange problem
35 flow
36 flow rate
37 fluid
38 fluid flow
39 front
40 graph
41 heat conduction problem
42 heat exchange
43 heat exchange problem
44 inlet
45 inverse heat conduction problem
46 isotherms
47 laminar fluid flow
48 liquid
49 number
50 numerical calculations
51 parabolic velocity profile
52 perturbation front
53 pipe inlet
54 problem
55 profile
56 range
57 rate
58 small distances
59 solution
60 space
61 spatial variables
62 stationary heat exchange problem
63 temperature changes
64 temperature distribution
65 temperature perturbation front
66 time
67 values
68 variables
69 velocity
70 velocity profiles
71 wide range
72 schema:name Heat Exchange in a Cylindrical Channel with Stabilized Laminar Fluid Flow
73 schema:pagination s29-s39
74 schema:productId N740c3bd2539f4200824bdebd0dee355a
75 Nb28cd855d9ff49839c53ccdb147c9a51
76 schema:sameAs https://app.dimensions.ai/details/publication/pub.1112392175
77 https://doi.org/10.1134/s0015462818040171
78 schema:sdDatePublished 2021-12-01T19:41
79 schema:sdLicense https://scigraph.springernature.com/explorer/license/
80 schema:sdPublisher N1e52c317339d4686b84632f9501b68eb
81 schema:url https://doi.org/10.1134/s0015462818040171
82 sgo:license sg:explorer/license/
83 sgo:sdDataset articles
84 rdf:type schema:ScholarlyArticle
85 N1e52c317339d4686b84632f9501b68eb schema:name Springer Nature - SN SciGraph project
86 rdf:type schema:Organization
87 N740c3bd2539f4200824bdebd0dee355a schema:name dimensions_id
88 schema:value pub.1112392175
89 rdf:type schema:PropertyValue
90 N7ed61aa786cd4c30ad64de0f1be0aafd rdf:first sg:person.014602635070.00
91 rdf:rest Nb9c8c2766db14f47883b72d6f8ad682b
92 N7eed5c35686e491a8846d342c00ad981 rdf:first sg:person.014424512265.37
93 rdf:rest N7ed61aa786cd4c30ad64de0f1be0aafd
94 N81ba4a1cc7d74ccdae9718584bd44770 schema:issueNumber Suppl 1
95 rdf:type schema:PublicationIssue
96 Nb05667b6e6b347d6bc66f3b949634da3 schema:volumeNumber 53
97 rdf:type schema:PublicationVolume
98 Nb28cd855d9ff49839c53ccdb147c9a51 schema:name doi
99 schema:value 10.1134/s0015462818040171
100 rdf:type schema:PropertyValue
101 Nb9c8c2766db14f47883b72d6f8ad682b rdf:first sg:person.010637046537.80
102 rdf:rest rdf:nil
103 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
104 schema:name Engineering
105 rdf:type schema:DefinedTerm
106 anzsrc-for:0915 schema:inDefinedTermSet anzsrc-for:
107 schema:name Interdisciplinary Engineering
108 rdf:type schema:DefinedTerm
109 sg:journal.1297462 schema:issn 0015-4628
110 1573-8507
111 schema:name Fluid Dynamics
112 schema:publisher Pleiades Publishing
113 rdf:type schema:Periodical
114 sg:person.010637046537.80 schema:affiliation grid-institutes:grid.445792.9
115 schema:familyName Stefanyuk
116 schema:givenName E. V.
117 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010637046537.80
118 rdf:type schema:Person
119 sg:person.014424512265.37 schema:affiliation grid-institutes:grid.445792.9
120 schema:familyName Eremin
121 schema:givenName A. V.
122 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014424512265.37
123 rdf:type schema:Person
124 sg:person.014602635070.00 schema:affiliation grid-institutes:grid.445792.9
125 schema:familyName Kudinov
126 schema:givenName V. A.
127 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014602635070.00
128 rdf:type schema:Person
129 sg:pub.10.1007/s10891-007-0136-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031129244
130 https://doi.org/10.1007/s10891-007-0136-3
131 rdf:type schema:CreativeWork
132 sg:pub.10.1134/s0018151x09020163 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006204753
133 https://doi.org/10.1134/s0018151x09020163
134 rdf:type schema:CreativeWork
135 grid-institutes:grid.445792.9 schema:alternateName Samara State Technical University, Samara, Russia
136 schema:name Samara State Technical University, Samara, Russia
137 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...