Mathematical model of heat transfer in a fluid with account for its relaxation properties View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2016-01

AUTHORS

A. V. Eremin, V. A. Kudinov, I. V. Kudinov

ABSTRACT

Using the terms that take account for the temporal and spatial nonlocality (time variation of the heat flux and the temperature gradient) in the formula of Fourier’s law for the heat flux a differential equation for a fluid in motion is derived that contains the second time derivative and themixed derivative with respect to the spatial and temporal variables. Numerical solution of the problem of heat transfer in the laminar fluid flow in a plane channel demonstrates that, in view of the lag in the time variation of the heat flux from zero to a certain maximum value, the boundary condition of the first kind (thermal shock) cannot be instantaneously realized. The process of its stabilization on the wall is characterized by a certain time interval, whose duration is determined by the relaxation properties of the fluid. At large values of the dimensionless coefficients of the heat flux relaxation and the temperature gradient the boundary condition of the first kind can be realized only as the steady state is attainted, as Fo→∞. In this case, the flow does not contain temperature jumps and negative temperature values. More... »

PAGES

33-44

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1134/s0015462816010051

DOI

http://dx.doi.org/10.1134/s0015462816010051

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1047333905


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0915", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Interdisciplinary Engineering", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Samara State Technical University, ul. Molodogvardeiskaya 244, 443100, Samara, Russia", 
          "id": "http://www.grid.ac/institutes/grid.445792.9", 
          "name": [
            "Samara State Technical University, ul. Molodogvardeiskaya 244, 443100, Samara, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Eremin", 
        "givenName": "A. V.", 
        "id": "sg:person.015401043035.14", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015401043035.14"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Samara State Technical University, ul. Molodogvardeiskaya 244, 443100, Samara, Russia", 
          "id": "http://www.grid.ac/institutes/grid.445792.9", 
          "name": [
            "Samara State Technical University, ul. Molodogvardeiskaya 244, 443100, Samara, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kudinov", 
        "givenName": "V. A.", 
        "id": "sg:person.014602635070.00", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014602635070.00"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Samara State Technical University, ul. Molodogvardeiskaya 244, 443100, Samara, Russia", 
          "id": "http://www.grid.ac/institutes/grid.445792.9", 
          "name": [
            "Samara State Technical University, ul. Molodogvardeiskaya 244, 443100, Samara, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kudinov", 
        "givenName": "I. V.", 
        "id": "sg:person.013117131562.63", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013117131562.63"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/978-3-642-65318-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004543084", 
          "https://doi.org/10.1007/978-3-642-65318-6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-642-97430-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019021178", 
          "https://doi.org/10.1007/978-3-642-97430-4"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2016-01", 
    "datePublishedReg": "2016-01-01", 
    "description": "Using the terms that take account for the temporal and spatial nonlocality (time variation of the heat flux and the temperature gradient) in the formula of Fourier\u2019s law for the heat flux a differential equation for a fluid in motion is derived that contains the second time derivative and themixed derivative with respect to the spatial and temporal variables. Numerical solution of the problem of heat transfer in the laminar fluid flow in a plane channel demonstrates that, in view of the lag in the time variation of the heat flux from zero to a certain maximum value, the boundary condition of the first kind (thermal shock) cannot be instantaneously realized. The process of its stabilization on the wall is characterized by a certain time interval, whose duration is determined by the relaxation properties of the fluid. At large values of the dimensionless coefficients of the heat flux relaxation and the temperature gradient the boundary condition of the first kind can be realized only as the steady state is attainted, as Fo\u2192\u221e. In this case, the flow does not contain temperature jumps and negative temperature values.", 
    "genre": "article", 
    "id": "sg:pub.10.1134/s0015462816010051", 
    "inLanguage": "en", 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1297462", 
        "issn": [
          "0015-4628", 
          "1573-8507"
        ], 
        "name": "Fluid Dynamics", 
        "publisher": "Pleiades Publishing", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "51"
      }
    ], 
    "keywords": [
      "heat transfer", 
      "heat flux relaxation", 
      "boundary conditions", 
      "laminar fluid flow", 
      "heat flux", 
      "negative temperature values", 
      "plane channel", 
      "Fourier's law", 
      "fluid flow", 
      "temperature jump", 
      "dimensionless coefficient", 
      "relaxation properties", 
      "flux relaxation", 
      "certain maximum value", 
      "mathematical model", 
      "numerical solution", 
      "temperature values", 
      "maximum value", 
      "flow", 
      "first kind", 
      "spatial nonlocality", 
      "fluid", 
      "time variation", 
      "large values", 
      "properties", 
      "certain time interval", 
      "steady state", 
      "heat", 
      "transfer", 
      "differential equations", 
      "flux", 
      "temperature", 
      "conditions", 
      "motion", 
      "wall", 
      "coefficient", 
      "law", 
      "kind", 
      "equations", 
      "account", 
      "solution", 
      "values", 
      "process", 
      "jump", 
      "channels", 
      "model", 
      "time interval", 
      "relaxation", 
      "variation", 
      "temporal variables", 
      "stabilization", 
      "problem", 
      "respect", 
      "formula", 
      "terms", 
      "time", 
      "lag", 
      "state", 
      "variables", 
      "nonlocality", 
      "cases", 
      "second time", 
      "view", 
      "duration", 
      "intervals", 
      "derivatives", 
      "themixed derivative"
    ], 
    "name": "Mathematical model of heat transfer in a fluid with account for its relaxation properties", 
    "pagination": "33-44", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1047333905"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1134/s0015462816010051"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1134/s0015462816010051", 
      "https://app.dimensions.ai/details/publication/pub.1047333905"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2021-12-01T19:37", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20211201/entities/gbq_results/article/article_700.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1134/s0015462816010051"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1134/s0015462816010051'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1134/s0015462816010051'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1134/s0015462816010051'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1134/s0015462816010051'


 

This table displays all metadata directly associated to this object as RDF triples.

147 TRIPLES      22 PREDICATES      95 URIs      85 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1134/s0015462816010051 schema:about anzsrc-for:09
2 anzsrc-for:0915
3 schema:author N36a6b92a340c430488bad8426a858d7e
4 schema:citation sg:pub.10.1007/978-3-642-65318-6
5 sg:pub.10.1007/978-3-642-97430-4
6 schema:datePublished 2016-01
7 schema:datePublishedReg 2016-01-01
8 schema:description Using the terms that take account for the temporal and spatial nonlocality (time variation of the heat flux and the temperature gradient) in the formula of Fourier’s law for the heat flux a differential equation for a fluid in motion is derived that contains the second time derivative and themixed derivative with respect to the spatial and temporal variables. Numerical solution of the problem of heat transfer in the laminar fluid flow in a plane channel demonstrates that, in view of the lag in the time variation of the heat flux from zero to a certain maximum value, the boundary condition of the first kind (thermal shock) cannot be instantaneously realized. The process of its stabilization on the wall is characterized by a certain time interval, whose duration is determined by the relaxation properties of the fluid. At large values of the dimensionless coefficients of the heat flux relaxation and the temperature gradient the boundary condition of the first kind can be realized only as the steady state is attainted, as Fo→∞. In this case, the flow does not contain temperature jumps and negative temperature values.
9 schema:genre article
10 schema:inLanguage en
11 schema:isAccessibleForFree false
12 schema:isPartOf N37e40aed3fa74f56b47b6b40002b3462
13 Ne18beaca24ae4a9eb4b4f97a5e9847ad
14 sg:journal.1297462
15 schema:keywords Fourier's law
16 account
17 boundary conditions
18 cases
19 certain maximum value
20 certain time interval
21 channels
22 coefficient
23 conditions
24 derivatives
25 differential equations
26 dimensionless coefficient
27 duration
28 equations
29 first kind
30 flow
31 fluid
32 fluid flow
33 flux
34 flux relaxation
35 formula
36 heat
37 heat flux
38 heat flux relaxation
39 heat transfer
40 intervals
41 jump
42 kind
43 lag
44 laminar fluid flow
45 large values
46 law
47 mathematical model
48 maximum value
49 model
50 motion
51 negative temperature values
52 nonlocality
53 numerical solution
54 plane channel
55 problem
56 process
57 properties
58 relaxation
59 relaxation properties
60 respect
61 second time
62 solution
63 spatial nonlocality
64 stabilization
65 state
66 steady state
67 temperature
68 temperature jump
69 temperature values
70 temporal variables
71 terms
72 themixed derivative
73 time
74 time interval
75 time variation
76 transfer
77 values
78 variables
79 variation
80 view
81 wall
82 schema:name Mathematical model of heat transfer in a fluid with account for its relaxation properties
83 schema:pagination 33-44
84 schema:productId Nbcf1a1c04a0643708b30976bac0a6cd1
85 Ncfcd89de081a4d3ea34458b42827ee4b
86 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047333905
87 https://doi.org/10.1134/s0015462816010051
88 schema:sdDatePublished 2021-12-01T19:37
89 schema:sdLicense https://scigraph.springernature.com/explorer/license/
90 schema:sdPublisher N5d5b22e2f7734ffba8f297007618ca97
91 schema:url https://doi.org/10.1134/s0015462816010051
92 sgo:license sg:explorer/license/
93 sgo:sdDataset articles
94 rdf:type schema:ScholarlyArticle
95 N36a6b92a340c430488bad8426a858d7e rdf:first sg:person.015401043035.14
96 rdf:rest N55fe653f05a94ce3b63b281827ee4886
97 N37e40aed3fa74f56b47b6b40002b3462 schema:volumeNumber 51
98 rdf:type schema:PublicationVolume
99 N55fe653f05a94ce3b63b281827ee4886 rdf:first sg:person.014602635070.00
100 rdf:rest Nfa0939a69f3743dbbf36619562204415
101 N5d5b22e2f7734ffba8f297007618ca97 schema:name Springer Nature - SN SciGraph project
102 rdf:type schema:Organization
103 Nbcf1a1c04a0643708b30976bac0a6cd1 schema:name doi
104 schema:value 10.1134/s0015462816010051
105 rdf:type schema:PropertyValue
106 Ncfcd89de081a4d3ea34458b42827ee4b schema:name dimensions_id
107 schema:value pub.1047333905
108 rdf:type schema:PropertyValue
109 Ne18beaca24ae4a9eb4b4f97a5e9847ad schema:issueNumber 1
110 rdf:type schema:PublicationIssue
111 Nfa0939a69f3743dbbf36619562204415 rdf:first sg:person.013117131562.63
112 rdf:rest rdf:nil
113 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
114 schema:name Engineering
115 rdf:type schema:DefinedTerm
116 anzsrc-for:0915 schema:inDefinedTermSet anzsrc-for:
117 schema:name Interdisciplinary Engineering
118 rdf:type schema:DefinedTerm
119 sg:journal.1297462 schema:issn 0015-4628
120 1573-8507
121 schema:name Fluid Dynamics
122 schema:publisher Pleiades Publishing
123 rdf:type schema:Periodical
124 sg:person.013117131562.63 schema:affiliation grid-institutes:grid.445792.9
125 schema:familyName Kudinov
126 schema:givenName I. V.
127 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013117131562.63
128 rdf:type schema:Person
129 sg:person.014602635070.00 schema:affiliation grid-institutes:grid.445792.9
130 schema:familyName Kudinov
131 schema:givenName V. A.
132 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014602635070.00
133 rdf:type schema:Person
134 sg:person.015401043035.14 schema:affiliation grid-institutes:grid.445792.9
135 schema:familyName Eremin
136 schema:givenName A. V.
137 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015401043035.14
138 rdf:type schema:Person
139 sg:pub.10.1007/978-3-642-65318-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004543084
140 https://doi.org/10.1007/978-3-642-65318-6
141 rdf:type schema:CreativeWork
142 sg:pub.10.1007/978-3-642-97430-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019021178
143 https://doi.org/10.1007/978-3-642-97430-4
144 rdf:type schema:CreativeWork
145 grid-institutes:grid.445792.9 schema:alternateName Samara State Technical University, ul. Molodogvardeiskaya 244, 443100, Samara, Russia
146 schema:name Samara State Technical University, ul. Molodogvardeiskaya 244, 443100, Samara, Russia
147 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...