Thermocycle and Evolutionary Combinatorics in the Genesis and Evolution of Protobiopolymers. Basic Kinetic Principles View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2018-08

AUTHORS

S. D. Varfolomeev, S. B. Tsybenova, V. I. Bykov, V. M. Goldberg

ABSTRACT

The basic kinetic principles of genesis and evolution of protobiopolymeric molecules are discussed. An approach combining polymerization and selection of macromolecular structures is the thermocycle providing the thermodynamic feasibility of formation of the monomer–monomer bond and kinetic selection of structures by picking more regular complexes. The basic kinetic principle of the successful evolutionary process is formulated as follows: the systems win if the mechanism of their development involves exponential growth steps. More... »

PAGES

117-120

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1134/s0012501618080043

DOI

http://dx.doi.org/10.1134/s0012501618080043

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1106473104


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0303", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Macromolecular and Materials Chemistry", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/03", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Chemical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Russian Academy of Sciences", 
          "id": "https://www.grid.ac/institutes/grid.4886.2", 
          "name": [
            "Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, 119334, Moscow, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Varfolomeev", 
        "givenName": "S. D.", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Russian Academy of Sciences", 
          "id": "https://www.grid.ac/institutes/grid.4886.2", 
          "name": [
            "Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, 119334, Moscow, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Tsybenova", 
        "givenName": "S. B.", 
        "id": "sg:person.016031406473.32", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016031406473.32"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Russian Academy of Sciences", 
          "id": "https://www.grid.ac/institutes/grid.4886.2", 
          "name": [
            "Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, 119334, Moscow, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Bykov", 
        "givenName": "V. I.", 
        "id": "sg:person.013100221425.12", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013100221425.12"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Russian Academy of Sciences", 
          "id": "https://www.grid.ac/institutes/grid.4886.2", 
          "name": [
            "Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, 119334, Moscow, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Goldberg", 
        "givenName": "V. M.", 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1006/jtbi.2001.2384", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015282233"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11172-012-0060-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036949541", 
          "https://doi.org/10.1007/s11172-012-0060-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1134/s0016702914130102", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037709461", 
          "https://doi.org/10.1134/s0016702914130102"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.mencom.2007.01.003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048122701"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2018-08", 
    "datePublishedReg": "2018-08-01", 
    "description": "The basic kinetic principles of genesis and evolution of protobiopolymeric molecules are discussed. An approach combining polymerization and selection of macromolecular structures is the thermocycle providing the thermodynamic feasibility of formation of the monomer\u2013monomer bond and kinetic selection of structures by picking more regular complexes. The basic kinetic principle of the successful evolutionary process is formulated as follows: the systems win if the mechanism of their development involves exponential growth steps.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1134/s0012501618080043", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1083525", 
        "issn": [
          "0012-5016", 
          "1608-3121"
        ], 
        "name": "Doklady Physical Chemistry", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "2", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "481"
      }
    ], 
    "name": "Thermocycle and Evolutionary Combinatorics in the Genesis and Evolution of Protobiopolymers. Basic Kinetic Principles", 
    "pagination": "117-120", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "eaf076640484e2041d4140b3f5e14e25e8a0a6680936f719d2a3f1054e4a4041"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1134/s0012501618080043"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1106473104"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1134/s0012501618080043", 
      "https://app.dimensions.ai/details/publication/pub.1106473104"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T23:34", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8693_00000569.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1134%2FS0012501618080043"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1134/s0012501618080043'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1134/s0012501618080043'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1134/s0012501618080043'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1134/s0012501618080043'


 

This table displays all metadata directly associated to this object as RDF triples.

94 TRIPLES      21 PREDICATES      31 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1134/s0012501618080043 schema:about anzsrc-for:03
2 anzsrc-for:0303
3 schema:author N0fc45b1bd78b40179f25513ef36b5e67
4 schema:citation sg:pub.10.1007/s11172-012-0060-3
5 sg:pub.10.1134/s0016702914130102
6 https://doi.org/10.1006/jtbi.2001.2384
7 https://doi.org/10.1016/j.mencom.2007.01.003
8 schema:datePublished 2018-08
9 schema:datePublishedReg 2018-08-01
10 schema:description The basic kinetic principles of genesis and evolution of protobiopolymeric molecules are discussed. An approach combining polymerization and selection of macromolecular structures is the thermocycle providing the thermodynamic feasibility of formation of the monomer–monomer bond and kinetic selection of structures by picking more regular complexes. The basic kinetic principle of the successful evolutionary process is formulated as follows: the systems win if the mechanism of their development involves exponential growth steps.
11 schema:genre research_article
12 schema:inLanguage en
13 schema:isAccessibleForFree false
14 schema:isPartOf N89940779685043b384d93675e0a5d99a
15 Nc26cc1dc177c43d3b96ace8b9a769f48
16 sg:journal.1083525
17 schema:name Thermocycle and Evolutionary Combinatorics in the Genesis and Evolution of Protobiopolymers. Basic Kinetic Principles
18 schema:pagination 117-120
19 schema:productId N7b9e7d510aa94fb8aa87e7c776ea1ea1
20 Nd63621deff3846f09d7aabc9e434e4b6
21 Nddf8a1d827a946128c12dd80e446e949
22 schema:sameAs https://app.dimensions.ai/details/publication/pub.1106473104
23 https://doi.org/10.1134/s0012501618080043
24 schema:sdDatePublished 2019-04-10T23:34
25 schema:sdLicense https://scigraph.springernature.com/explorer/license/
26 schema:sdPublisher N04b4c9a314dd4133b15a5aa71e77b7e7
27 schema:url https://link.springer.com/10.1134%2FS0012501618080043
28 sgo:license sg:explorer/license/
29 sgo:sdDataset articles
30 rdf:type schema:ScholarlyArticle
31 N04b4c9a314dd4133b15a5aa71e77b7e7 schema:name Springer Nature - SN SciGraph project
32 rdf:type schema:Organization
33 N0fc45b1bd78b40179f25513ef36b5e67 rdf:first Nf253273ff8b04aa2a7b0b243de2e40c8
34 rdf:rest Nee2aaba1a0e54e7a8f3a4da59a02ae8e
35 N5d1112377a954d8b9e63a076429c002f rdf:first Ned32aa1e977e4947be948a353a43c901
36 rdf:rest rdf:nil
37 N7b9e7d510aa94fb8aa87e7c776ea1ea1 schema:name readcube_id
38 schema:value eaf076640484e2041d4140b3f5e14e25e8a0a6680936f719d2a3f1054e4a4041
39 rdf:type schema:PropertyValue
40 N89940779685043b384d93675e0a5d99a schema:volumeNumber 481
41 rdf:type schema:PublicationVolume
42 Nc26cc1dc177c43d3b96ace8b9a769f48 schema:issueNumber 2
43 rdf:type schema:PublicationIssue
44 Nc2cb3f01610648a6af07696a81d8dad6 rdf:first sg:person.013100221425.12
45 rdf:rest N5d1112377a954d8b9e63a076429c002f
46 Nd63621deff3846f09d7aabc9e434e4b6 schema:name doi
47 schema:value 10.1134/s0012501618080043
48 rdf:type schema:PropertyValue
49 Nddf8a1d827a946128c12dd80e446e949 schema:name dimensions_id
50 schema:value pub.1106473104
51 rdf:type schema:PropertyValue
52 Ned32aa1e977e4947be948a353a43c901 schema:affiliation https://www.grid.ac/institutes/grid.4886.2
53 schema:familyName Goldberg
54 schema:givenName V. M.
55 rdf:type schema:Person
56 Nee2aaba1a0e54e7a8f3a4da59a02ae8e rdf:first sg:person.016031406473.32
57 rdf:rest Nc2cb3f01610648a6af07696a81d8dad6
58 Nf253273ff8b04aa2a7b0b243de2e40c8 schema:affiliation https://www.grid.ac/institutes/grid.4886.2
59 schema:familyName Varfolomeev
60 schema:givenName S. D.
61 rdf:type schema:Person
62 anzsrc-for:03 schema:inDefinedTermSet anzsrc-for:
63 schema:name Chemical Sciences
64 rdf:type schema:DefinedTerm
65 anzsrc-for:0303 schema:inDefinedTermSet anzsrc-for:
66 schema:name Macromolecular and Materials Chemistry
67 rdf:type schema:DefinedTerm
68 sg:journal.1083525 schema:issn 0012-5016
69 1608-3121
70 schema:name Doklady Physical Chemistry
71 rdf:type schema:Periodical
72 sg:person.013100221425.12 schema:affiliation https://www.grid.ac/institutes/grid.4886.2
73 schema:familyName Bykov
74 schema:givenName V. I.
75 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013100221425.12
76 rdf:type schema:Person
77 sg:person.016031406473.32 schema:affiliation https://www.grid.ac/institutes/grid.4886.2
78 schema:familyName Tsybenova
79 schema:givenName S. B.
80 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016031406473.32
81 rdf:type schema:Person
82 sg:pub.10.1007/s11172-012-0060-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036949541
83 https://doi.org/10.1007/s11172-012-0060-3
84 rdf:type schema:CreativeWork
85 sg:pub.10.1134/s0016702914130102 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037709461
86 https://doi.org/10.1134/s0016702914130102
87 rdf:type schema:CreativeWork
88 https://doi.org/10.1006/jtbi.2001.2384 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015282233
89 rdf:type schema:CreativeWork
90 https://doi.org/10.1016/j.mencom.2007.01.003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048122701
91 rdf:type schema:CreativeWork
92 https://www.grid.ac/institutes/grid.4886.2 schema:alternateName Russian Academy of Sciences
93 schema:name Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, 119334, Moscow, Russia
94 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...