Generalization of the Nernst layer model to take into account the difference in diffusivity between the components of the system ... View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2016-11

AUTHORS

A. E. Antipov, M. A. Vorotyntsev, Yu. V. Tolmachev, E. M. Antipov, S. M. Aldoshin

ABSTRACT

The reduction of nonelectroactive bromate anion BrO3- from acidic solutions while limiting the maximum current by diffusion transport of protons was studied by methods of numerical integration of transport equations. The calculation was performed based on a generalization of the Nernst steady diffusion layer model, in which the choice of the layer thickness for each component of the system is made using the Levich formula and takes into account the difference in diffusivity between the components. This difference in layer thickness was shown to have a significant effect on the main characteristics of the system, such as the maximum possible discharge current, and also the concentration profiles of the components. More... »

PAGES

185-189

Identifiers

URI

http://scigraph.springernature.com/pub.10.1134/s001250161611004x

DOI

http://dx.doi.org/10.1134/s001250161611004x

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1013156553


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/03", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Chemical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0306", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Chemistry (incl. Structural)", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Mendeleev University of Chemical Technology of Russia, Miusskaya pl. 9, 125047, Moscow, Russia", 
          "id": "http://www.grid.ac/institutes/grid.39572.3a", 
          "name": [
            "Moscow State University, 119991, Moscow, Russia", 
            "Mendeleev University of Chemical Technology of Russia, Miusskaya pl. 9, 125047, Moscow, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Antipov", 
        "givenName": "A. E.", 
        "id": "sg:person.014025050645.81", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014025050645.81"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Institut de Chimie Mol\u00e9culaire de l\u2019Universit\u00e9 de Bourgogne (ICMUB) - UMR 5260 CNRS, Dijon, France", 
          "id": "http://www.grid.ac/institutes/grid.5613.1", 
          "name": [
            "Moscow State University, 119991, Moscow, Russia", 
            "Mendeleev University of Chemical Technology of Russia, Miusskaya pl. 9, 125047, Moscow, Russia", 
            "Institute of Problems of Chemical Physics, Russian Academy of Sciences, pr. Akademika Semenova 1, 142432, Chernogolovka, Moscow oblast, Russia", 
            "Institut de Chimie Mol\u00e9culaire de l\u2019Universit\u00e9 de Bourgogne (ICMUB) - UMR 5260 CNRS, Dijon, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Vorotyntsev", 
        "givenName": "M. A.", 
        "id": "sg:person.01110714773.18", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01110714773.18"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Ftorion, Inc., 02120-3303, Boston, MA, USA", 
          "id": "http://www.grid.ac/institutes/None", 
          "name": [
            "Mendeleev University of Chemical Technology of Russia, Miusskaya pl. 9, 125047, Moscow, Russia", 
            "Ftorion, Inc., 02120-3303, Boston, MA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Tolmachev", 
        "givenName": "Yu. V.", 
        "id": "sg:person.012234367767.30", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012234367767.30"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Mendeleev University of Chemical Technology of Russia, Miusskaya pl. 9, 125047, Moscow, Russia", 
          "id": "http://www.grid.ac/institutes/grid.39572.3a", 
          "name": [
            "Moscow State University, 119991, Moscow, Russia", 
            "Mendeleev University of Chemical Technology of Russia, Miusskaya pl. 9, 125047, Moscow, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Antipov", 
        "givenName": "E. M.", 
        "id": "sg:person.01005226707.06", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01005226707.06"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Institute of Problems of Chemical Physics, Russian Academy of Sciences, pr. Akademika Semenova 1, 142432, Chernogolovka, Moscow oblast, Russia", 
          "id": "http://www.grid.ac/institutes/grid.418949.9", 
          "name": [
            "Moscow State University, 119991, Moscow, Russia", 
            "Institute of Problems of Chemical Physics, Russian Academy of Sciences, pr. Akademika Semenova 1, 142432, Chernogolovka, Moscow oblast, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Aldoshin", 
        "givenName": "S. M.", 
        "id": "sg:person.014353217357.41", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014353217357.41"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1134/s0012500816050025", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020461426", 
          "https://doi.org/10.1134/s0012500816050025"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10008-015-2805-z", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045704466", 
          "https://doi.org/10.1007/s10008-015-2805-z"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2016-11", 
    "datePublishedReg": "2016-11-01", 
    "description": "The reduction of nonelectroactive bromate anion BrO3- from acidic solutions while limiting the maximum current by diffusion transport of protons was studied by methods of numerical integration of transport equations. The calculation was performed based on a generalization of the Nernst steady diffusion layer model, in which the choice of the layer thickness for each component of the system is made using the Levich formula and takes into account the difference in diffusivity between the components. This difference in layer thickness was shown to have a significant effect on the main characteristics of the system, such as the maximum possible discharge current, and also the concentration profiles of the components.", 
    "genre": "article", 
    "id": "sg:pub.10.1134/s001250161611004x", 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1083525", 
        "issn": [
          "0012-5016", 
          "1608-3121"
        ], 
        "name": "Doklady Physical Chemistry", 
        "publisher": "Pleiades Publishing", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "471"
      }
    ], 
    "keywords": [
      "layer thickness", 
      "layer model", 
      "diffusion layer model", 
      "Nernst layer model", 
      "diffusion transport", 
      "bromate reduction", 
      "Levich formula", 
      "transport equation", 
      "concentration profiles", 
      "diffusivity", 
      "thickness", 
      "possible discharge", 
      "acidic solution", 
      "numerical integration", 
      "one-dimensional mode", 
      "proton transport", 
      "main characteristics", 
      "transport", 
      "system", 
      "components", 
      "model", 
      "reduction", 
      "mode", 
      "equations", 
      "solution", 
      "account", 
      "significant effect", 
      "characteristics", 
      "calculations", 
      "BrO3", 
      "discharge", 
      "method", 
      "integration", 
      "formula", 
      "profile", 
      "effect", 
      "differences", 
      "protons", 
      "choice", 
      "generalization"
    ], 
    "name": "Generalization of the Nernst layer model to take into account the difference in diffusivity between the components of the system in bromate reduction in steady-state one-dimensional mode: Current limiting by proton transport", 
    "pagination": "185-189", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1013156553"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1134/s001250161611004x"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1134/s001250161611004x", 
      "https://app.dimensions.ai/details/publication/pub.1013156553"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-10-01T06:42", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20221001/entities/gbq_results/article/article_708.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1134/s001250161611004x"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1134/s001250161611004x'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1134/s001250161611004x'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1134/s001250161611004x'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1134/s001250161611004x'


 

This table displays all metadata directly associated to this object as RDF triples.

148 TRIPLES      21 PREDICATES      67 URIs      57 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1134/s001250161611004x schema:about anzsrc-for:03
2 anzsrc-for:0306
3 schema:author N0c14e5800d8b436bb4a32b56e523d2c0
4 schema:citation sg:pub.10.1007/s10008-015-2805-z
5 sg:pub.10.1134/s0012500816050025
6 schema:datePublished 2016-11
7 schema:datePublishedReg 2016-11-01
8 schema:description The reduction of nonelectroactive bromate anion BrO3- from acidic solutions while limiting the maximum current by diffusion transport of protons was studied by methods of numerical integration of transport equations. The calculation was performed based on a generalization of the Nernst steady diffusion layer model, in which the choice of the layer thickness for each component of the system is made using the Levich formula and takes into account the difference in diffusivity between the components. This difference in layer thickness was shown to have a significant effect on the main characteristics of the system, such as the maximum possible discharge current, and also the concentration profiles of the components.
9 schema:genre article
10 schema:isAccessibleForFree false
11 schema:isPartOf N7f8aef646033446d911c6850653ab632
12 Nf4ff8c46f1af4baf8f05598a60908ed1
13 sg:journal.1083525
14 schema:keywords BrO3
15 Levich formula
16 Nernst layer model
17 account
18 acidic solution
19 bromate reduction
20 calculations
21 characteristics
22 choice
23 components
24 concentration profiles
25 differences
26 diffusion layer model
27 diffusion transport
28 diffusivity
29 discharge
30 effect
31 equations
32 formula
33 generalization
34 integration
35 layer model
36 layer thickness
37 main characteristics
38 method
39 mode
40 model
41 numerical integration
42 one-dimensional mode
43 possible discharge
44 profile
45 proton transport
46 protons
47 reduction
48 significant effect
49 solution
50 system
51 thickness
52 transport
53 transport equation
54 schema:name Generalization of the Nernst layer model to take into account the difference in diffusivity between the components of the system in bromate reduction in steady-state one-dimensional mode: Current limiting by proton transport
55 schema:pagination 185-189
56 schema:productId N2aac51c72d244163ac93d66c32873f88
57 N4105044e55e74f4ba28e40d4c85b1a55
58 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013156553
59 https://doi.org/10.1134/s001250161611004x
60 schema:sdDatePublished 2022-10-01T06:42
61 schema:sdLicense https://scigraph.springernature.com/explorer/license/
62 schema:sdPublisher N9dc1d9fc6fb24698ae8c33f68b1e7d3b
63 schema:url https://doi.org/10.1134/s001250161611004x
64 sgo:license sg:explorer/license/
65 sgo:sdDataset articles
66 rdf:type schema:ScholarlyArticle
67 N0c14e5800d8b436bb4a32b56e523d2c0 rdf:first sg:person.014025050645.81
68 rdf:rest Nd14dc860ae0e49139508dae5951a7235
69 N150ebd46cc294bc99d89f7ca880b96c8 rdf:first sg:person.012234367767.30
70 rdf:rest N7e6ce580157c4ac9a36fe42762bf337f
71 N2aac51c72d244163ac93d66c32873f88 schema:name doi
72 schema:value 10.1134/s001250161611004x
73 rdf:type schema:PropertyValue
74 N4105044e55e74f4ba28e40d4c85b1a55 schema:name dimensions_id
75 schema:value pub.1013156553
76 rdf:type schema:PropertyValue
77 N7e6ce580157c4ac9a36fe42762bf337f rdf:first sg:person.01005226707.06
78 rdf:rest Nec7204a4a66c4dd6873ad948d0d2dbd6
79 N7f8aef646033446d911c6850653ab632 schema:volumeNumber 471
80 rdf:type schema:PublicationVolume
81 N9dc1d9fc6fb24698ae8c33f68b1e7d3b schema:name Springer Nature - SN SciGraph project
82 rdf:type schema:Organization
83 Nd14dc860ae0e49139508dae5951a7235 rdf:first sg:person.01110714773.18
84 rdf:rest N150ebd46cc294bc99d89f7ca880b96c8
85 Nec7204a4a66c4dd6873ad948d0d2dbd6 rdf:first sg:person.014353217357.41
86 rdf:rest rdf:nil
87 Nf4ff8c46f1af4baf8f05598a60908ed1 schema:issueNumber 1
88 rdf:type schema:PublicationIssue
89 anzsrc-for:03 schema:inDefinedTermSet anzsrc-for:
90 schema:name Chemical Sciences
91 rdf:type schema:DefinedTerm
92 anzsrc-for:0306 schema:inDefinedTermSet anzsrc-for:
93 schema:name Physical Chemistry (incl. Structural)
94 rdf:type schema:DefinedTerm
95 sg:journal.1083525 schema:issn 0012-5016
96 1608-3121
97 schema:name Doklady Physical Chemistry
98 schema:publisher Pleiades Publishing
99 rdf:type schema:Periodical
100 sg:person.01005226707.06 schema:affiliation grid-institutes:grid.39572.3a
101 schema:familyName Antipov
102 schema:givenName E. M.
103 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01005226707.06
104 rdf:type schema:Person
105 sg:person.01110714773.18 schema:affiliation grid-institutes:grid.5613.1
106 schema:familyName Vorotyntsev
107 schema:givenName M. A.
108 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01110714773.18
109 rdf:type schema:Person
110 sg:person.012234367767.30 schema:affiliation grid-institutes:None
111 schema:familyName Tolmachev
112 schema:givenName Yu. V.
113 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012234367767.30
114 rdf:type schema:Person
115 sg:person.014025050645.81 schema:affiliation grid-institutes:grid.39572.3a
116 schema:familyName Antipov
117 schema:givenName A. E.
118 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014025050645.81
119 rdf:type schema:Person
120 sg:person.014353217357.41 schema:affiliation grid-institutes:grid.418949.9
121 schema:familyName Aldoshin
122 schema:givenName S. M.
123 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014353217357.41
124 rdf:type schema:Person
125 sg:pub.10.1007/s10008-015-2805-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1045704466
126 https://doi.org/10.1007/s10008-015-2805-z
127 rdf:type schema:CreativeWork
128 sg:pub.10.1134/s0012500816050025 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020461426
129 https://doi.org/10.1134/s0012500816050025
130 rdf:type schema:CreativeWork
131 grid-institutes:None schema:alternateName Ftorion, Inc., 02120-3303, Boston, MA, USA
132 schema:name Ftorion, Inc., 02120-3303, Boston, MA, USA
133 Mendeleev University of Chemical Technology of Russia, Miusskaya pl. 9, 125047, Moscow, Russia
134 rdf:type schema:Organization
135 grid-institutes:grid.39572.3a schema:alternateName Mendeleev University of Chemical Technology of Russia, Miusskaya pl. 9, 125047, Moscow, Russia
136 schema:name Mendeleev University of Chemical Technology of Russia, Miusskaya pl. 9, 125047, Moscow, Russia
137 Moscow State University, 119991, Moscow, Russia
138 rdf:type schema:Organization
139 grid-institutes:grid.418949.9 schema:alternateName Institute of Problems of Chemical Physics, Russian Academy of Sciences, pr. Akademika Semenova 1, 142432, Chernogolovka, Moscow oblast, Russia
140 schema:name Institute of Problems of Chemical Physics, Russian Academy of Sciences, pr. Akademika Semenova 1, 142432, Chernogolovka, Moscow oblast, Russia
141 Moscow State University, 119991, Moscow, Russia
142 rdf:type schema:Organization
143 grid-institutes:grid.5613.1 schema:alternateName Institut de Chimie Moléculaire de l’Université de Bourgogne (ICMUB) - UMR 5260 CNRS, Dijon, France
144 schema:name Institut de Chimie Moléculaire de l’Université de Bourgogne (ICMUB) - UMR 5260 CNRS, Dijon, France
145 Institute of Problems of Chemical Physics, Russian Academy of Sciences, pr. Akademika Semenova 1, 142432, Chernogolovka, Moscow oblast, Russia
146 Mendeleev University of Chemical Technology of Russia, Miusskaya pl. 9, 125047, Moscow, Russia
147 Moscow State University, 119991, Moscow, Russia
148 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...