Lignin conversion to hydrogen-containing gas under the action of microwave radiation View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2017-08

AUTHORS

O. V. Arapova, M. V. Tsodikov, A. V. Chistyakov, S. S. Kurdyumov, A. E. Gekhman

ABSTRACT

The paper describes the carbon dioxide reforming of lignin in the presence of Ni-, Fe, and Ni/Fe-containing active components formed directly on the surface under microwave irradiation. The deposition of 0.1 wt % iron acetylacetonate on the lignin surface results in a sharp increase in the microwave absorption capacity at a 0.5 kW power and induces lignin conversion to hydrogen-containing gas with a degree of hydrogen recovery reaching 90 %. The maximum lignin conversion (65%) is attained in 10 min under microwave irradiation. It was shown for the first time that deposition of metals (Fe and Ni) on lignin can provide for targeted change of the selectivity of reforming to synthesis gas and the process can thus be classified as a plasma catalytic one. Using the obtained results, it is possible to minimize the amount of catalyst and to propose an efficient route for hydrogen and synthesis gas production from lignin waste. More... »

PAGES

184-187

Identifiers

URI

http://scigraph.springernature.com/pub.10.1134/s0012500817080018

DOI

http://dx.doi.org/10.1134/s0012500817080018

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1091413219


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0306", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Chemistry (incl. Structural)", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/03", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Chemical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Russian Academy of Sciences", 
          "id": "https://www.grid.ac/institutes/grid.4886.2", 
          "name": [
            "Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences, 117912, Moscow, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Arapova", 
        "givenName": "O. V.", 
        "id": "sg:person.016362165475.00", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016362165475.00"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Russian Academy of Sciences", 
          "id": "https://www.grid.ac/institutes/grid.4886.2", 
          "name": [
            "Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences, 117912, Moscow, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Tsodikov", 
        "givenName": "M. V.", 
        "id": "sg:person.015045563603.02", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015045563603.02"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Russian Academy of Sciences", 
          "id": "https://www.grid.ac/institutes/grid.4886.2", 
          "name": [
            "Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences, 117912, Moscow, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Chistyakov", 
        "givenName": "A. V.", 
        "id": "sg:person.013263727151.12", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013263727151.12"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Russian Academy of Sciences", 
          "id": "https://www.grid.ac/institutes/grid.4886.2", 
          "name": [
            "Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences, 117912, Moscow, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kurdyumov", 
        "givenName": "S. S.", 
        "id": "sg:person.012405313025.03", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012405313025.03"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Russian Academy of Sciences", 
          "id": "https://www.grid.ac/institutes/grid.4886.2", 
          "name": [
            "Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, 117907, Moscow, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Gekhman", 
        "givenName": "A. E.", 
        "id": "sg:person.07417600445.48", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07417600445.48"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/j.biortech.2014.03.103", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008531268"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.biortech.2016.11.072", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011373385"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1039/c5gc01054c", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012368961"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.rser.2014.07.073", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018253100"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.cej.2015.07.030", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028914035"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.cej.2016.10.031", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033880227"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.biortech.2015.12.085", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040768316"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.biortech.2015.12.085", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040768316"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.biortech.2015.12.085", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040768316"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.biortech.2015.12.085", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040768316"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.cej.2016.02.028", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051634612"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ef502403x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055480712"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2017-08", 
    "datePublishedReg": "2017-08-01", 
    "description": "The paper describes the carbon dioxide reforming of lignin in the presence of Ni-, Fe, and Ni/Fe-containing active components formed directly on the surface under microwave irradiation. The deposition of 0.1 wt % iron acetylacetonate on the lignin surface results in a sharp increase in the microwave absorption capacity at a 0.5 kW power and induces lignin conversion to hydrogen-containing gas with a degree of hydrogen recovery reaching 90 %. The maximum lignin conversion (65%) is attained in 10 min under microwave irradiation. It was shown for the first time that deposition of metals (Fe and Ni) on lignin can provide for targeted change of the selectivity of reforming to synthesis gas and the process can thus be classified as a plasma catalytic one. Using the obtained results, it is possible to minimize the amount of catalyst and to propose an efficient route for hydrogen and synthesis gas production from lignin waste.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1134/s0012500817080018", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1082681", 
        "issn": [
          "0012-5008", 
          "1608-3113"
        ], 
        "name": "Doklady Chemistry", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "2", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "475"
      }
    ], 
    "name": "Lignin conversion to hydrogen-containing gas under the action of microwave radiation", 
    "pagination": "184-187", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "0e0ef5138aee32efb181dc6d2b3108d6ffe6224ca3083ef81e9edda65a815f7f"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1134/s0012500817080018"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1091413219"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1134/s0012500817080018", 
      "https://app.dimensions.ai/details/publication/pub.1091413219"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T11:53", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000359_0000000359/records_29194_00000003.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1134/S0012500817080018"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1134/s0012500817080018'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1134/s0012500817080018'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1134/s0012500817080018'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1134/s0012500817080018'


 

This table displays all metadata directly associated to this object as RDF triples.

117 TRIPLES      21 PREDICATES      36 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1134/s0012500817080018 schema:about anzsrc-for:03
2 anzsrc-for:0306
3 schema:author Nde6bfa64c90f421283eeb38d1cdb4268
4 schema:citation https://doi.org/10.1016/j.biortech.2014.03.103
5 https://doi.org/10.1016/j.biortech.2015.12.085
6 https://doi.org/10.1016/j.biortech.2016.11.072
7 https://doi.org/10.1016/j.cej.2015.07.030
8 https://doi.org/10.1016/j.cej.2016.02.028
9 https://doi.org/10.1016/j.cej.2016.10.031
10 https://doi.org/10.1016/j.rser.2014.07.073
11 https://doi.org/10.1021/ef502403x
12 https://doi.org/10.1039/c5gc01054c
13 schema:datePublished 2017-08
14 schema:datePublishedReg 2017-08-01
15 schema:description The paper describes the carbon dioxide reforming of lignin in the presence of Ni-, Fe, and Ni/Fe-containing active components formed directly on the surface under microwave irradiation. The deposition of 0.1 wt % iron acetylacetonate on the lignin surface results in a sharp increase in the microwave absorption capacity at a 0.5 kW power and induces lignin conversion to hydrogen-containing gas with a degree of hydrogen recovery reaching 90 %. The maximum lignin conversion (65%) is attained in 10 min under microwave irradiation. It was shown for the first time that deposition of metals (Fe and Ni) on lignin can provide for targeted change of the selectivity of reforming to synthesis gas and the process can thus be classified as a plasma catalytic one. Using the obtained results, it is possible to minimize the amount of catalyst and to propose an efficient route for hydrogen and synthesis gas production from lignin waste.
16 schema:genre research_article
17 schema:inLanguage en
18 schema:isAccessibleForFree false
19 schema:isPartOf N41bdb067b7354e58aac6bcf80938869f
20 Nf240202487b34fdca9b110ec6315be75
21 sg:journal.1082681
22 schema:name Lignin conversion to hydrogen-containing gas under the action of microwave radiation
23 schema:pagination 184-187
24 schema:productId N30fc03eebf344d4b9fd69c9c4bb3f7d5
25 N624e0944f4e548349015dc9e5e9d8449
26 Nd9918487b02247e0b5629574b8f1c271
27 schema:sameAs https://app.dimensions.ai/details/publication/pub.1091413219
28 https://doi.org/10.1134/s0012500817080018
29 schema:sdDatePublished 2019-04-11T11:53
30 schema:sdLicense https://scigraph.springernature.com/explorer/license/
31 schema:sdPublisher N92a5ae88eeac428fa1033b7a4ead4462
32 schema:url http://link.springer.com/10.1134/S0012500817080018
33 sgo:license sg:explorer/license/
34 sgo:sdDataset articles
35 rdf:type schema:ScholarlyArticle
36 N1d7c9e700f4744e7a4424b8d14ad71ab rdf:first sg:person.015045563603.02
37 rdf:rest N820fa655e0fa4b90981c643443a3d3dc
38 N30fc03eebf344d4b9fd69c9c4bb3f7d5 schema:name doi
39 schema:value 10.1134/s0012500817080018
40 rdf:type schema:PropertyValue
41 N41bdb067b7354e58aac6bcf80938869f schema:volumeNumber 475
42 rdf:type schema:PublicationVolume
43 N624e0944f4e548349015dc9e5e9d8449 schema:name dimensions_id
44 schema:value pub.1091413219
45 rdf:type schema:PropertyValue
46 N820fa655e0fa4b90981c643443a3d3dc rdf:first sg:person.013263727151.12
47 rdf:rest N9bad913a89f94c428822cdf8f5defee0
48 N92a5ae88eeac428fa1033b7a4ead4462 schema:name Springer Nature - SN SciGraph project
49 rdf:type schema:Organization
50 N9bad913a89f94c428822cdf8f5defee0 rdf:first sg:person.012405313025.03
51 rdf:rest Nb34ae83da898463296c924cc8552297b
52 Nb34ae83da898463296c924cc8552297b rdf:first sg:person.07417600445.48
53 rdf:rest rdf:nil
54 Nd9918487b02247e0b5629574b8f1c271 schema:name readcube_id
55 schema:value 0e0ef5138aee32efb181dc6d2b3108d6ffe6224ca3083ef81e9edda65a815f7f
56 rdf:type schema:PropertyValue
57 Nde6bfa64c90f421283eeb38d1cdb4268 rdf:first sg:person.016362165475.00
58 rdf:rest N1d7c9e700f4744e7a4424b8d14ad71ab
59 Nf240202487b34fdca9b110ec6315be75 schema:issueNumber 2
60 rdf:type schema:PublicationIssue
61 anzsrc-for:03 schema:inDefinedTermSet anzsrc-for:
62 schema:name Chemical Sciences
63 rdf:type schema:DefinedTerm
64 anzsrc-for:0306 schema:inDefinedTermSet anzsrc-for:
65 schema:name Physical Chemistry (incl. Structural)
66 rdf:type schema:DefinedTerm
67 sg:journal.1082681 schema:issn 0012-5008
68 1608-3113
69 schema:name Doklady Chemistry
70 rdf:type schema:Periodical
71 sg:person.012405313025.03 schema:affiliation https://www.grid.ac/institutes/grid.4886.2
72 schema:familyName Kurdyumov
73 schema:givenName S. S.
74 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012405313025.03
75 rdf:type schema:Person
76 sg:person.013263727151.12 schema:affiliation https://www.grid.ac/institutes/grid.4886.2
77 schema:familyName Chistyakov
78 schema:givenName A. V.
79 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013263727151.12
80 rdf:type schema:Person
81 sg:person.015045563603.02 schema:affiliation https://www.grid.ac/institutes/grid.4886.2
82 schema:familyName Tsodikov
83 schema:givenName M. V.
84 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015045563603.02
85 rdf:type schema:Person
86 sg:person.016362165475.00 schema:affiliation https://www.grid.ac/institutes/grid.4886.2
87 schema:familyName Arapova
88 schema:givenName O. V.
89 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016362165475.00
90 rdf:type schema:Person
91 sg:person.07417600445.48 schema:affiliation https://www.grid.ac/institutes/grid.4886.2
92 schema:familyName Gekhman
93 schema:givenName A. E.
94 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07417600445.48
95 rdf:type schema:Person
96 https://doi.org/10.1016/j.biortech.2014.03.103 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008531268
97 rdf:type schema:CreativeWork
98 https://doi.org/10.1016/j.biortech.2015.12.085 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040768316
99 rdf:type schema:CreativeWork
100 https://doi.org/10.1016/j.biortech.2016.11.072 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011373385
101 rdf:type schema:CreativeWork
102 https://doi.org/10.1016/j.cej.2015.07.030 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028914035
103 rdf:type schema:CreativeWork
104 https://doi.org/10.1016/j.cej.2016.02.028 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051634612
105 rdf:type schema:CreativeWork
106 https://doi.org/10.1016/j.cej.2016.10.031 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033880227
107 rdf:type schema:CreativeWork
108 https://doi.org/10.1016/j.rser.2014.07.073 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018253100
109 rdf:type schema:CreativeWork
110 https://doi.org/10.1021/ef502403x schema:sameAs https://app.dimensions.ai/details/publication/pub.1055480712
111 rdf:type schema:CreativeWork
112 https://doi.org/10.1039/c5gc01054c schema:sameAs https://app.dimensions.ai/details/publication/pub.1012368961
113 rdf:type schema:CreativeWork
114 https://www.grid.ac/institutes/grid.4886.2 schema:alternateName Russian Academy of Sciences
115 schema:name Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, 117907, Moscow, Russia
116 Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences, 117912, Moscow, Russia
117 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...