Reconstruction of Unknown Disturbances When Measuring Part of Phase Coordinates View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2022-03

AUTHORS

M. S. Blizorukova

ABSTRACT

We consider the problem of dynamic reconstruction of unknown input actions of a system of nonlinear equations based on inaccurate measurements of part of the phase states of the system taken at discrete times. It is assumed that the system operates on a given finite time horizon. The evolution of the phase state of the system is determined by an unknown input. An exact reconstruction of the true input acting on the system is, generally speaking, impossible due to the measurement error. We present an algorithm for approximate input reconstruction that is based on combining dynamic versions of the smoothing functional method and the residual method and is a special regularizing algorithm for one of the versions of the inverse problem of dynamics. More... »

PAGES

415-423

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1134/s0012266122030119

DOI

http://dx.doi.org/10.1134/s0012266122030119

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1148225396


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Pure Mathematics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0102", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Applied Mathematics", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Krasovskii Institute of Mathematics and Mechanics, Ural Branch,Russian Academy of Sciences, 620108, Yekaterinburg, Russia", 
          "id": "http://www.grid.ac/institutes/grid.426536.0", 
          "name": [
            "Krasovskii Institute of Mathematics and Mechanics, Ural Branch,Russian Academy of Sciences, 620108, Yekaterinburg, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Blizorukova", 
        "givenName": "M. S.", 
        "id": "sg:person.015554655611.18", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015554655611.18"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1134/s0081543815080179", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010663054", 
          "https://doi.org/10.1134/s0081543815080179"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1134/s0965542519110113", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1123261226", 
          "https://doi.org/10.1134/s0965542519110113"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1134/s0965542511060029", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022669050", 
          "https://doi.org/10.1134/s0965542511060029"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2022-03", 
    "datePublishedReg": "2022-03-01", 
    "description": "Abstract We consider the problem of dynamic reconstruction of unknown input actions of a system\nof nonlinear equations based on inaccurate measurements of part of the phase states of the system\ntaken at discrete times. It is assumed that the system operates on a given finite time horizon. The\nevolution of the phase state of the system is determined by an unknown input. An exact\nreconstruction of the true input acting on the system is, generally speaking, impossible due to the\nmeasurement error. We present an algorithm for approximate input reconstruction that is based\non combining dynamic versions of the smoothing functional method and the residual method and\nis a special regularizing algorithm for one of the versions of the inverse problem of dynamics.", 
    "genre": "article", 
    "id": "sg:pub.10.1134/s0012266122030119", 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1135881", 
        "issn": [
          "0012-2661", 
          "1608-3083"
        ], 
        "name": "Differential Equations", 
        "publisher": "Pleiades Publishing", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "3", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "58"
      }
    ], 
    "keywords": [
      "phase state", 
      "functional method", 
      "state", 
      "measurement error", 
      "unknown disturbances", 
      "inaccurate measurements", 
      "measurements", 
      "unknown inputs", 
      "inverse problem", 
      "coordinates", 
      "regularizing algorithm", 
      "dynamics", 
      "input reconstruction", 
      "phase coordinates", 
      "reconstruction", 
      "nonlinear equations", 
      "true input", 
      "residual method", 
      "dynamic reconstruction", 
      "system", 
      "evolution", 
      "equations", 
      "finite time horizon", 
      "method", 
      "input actions", 
      "horizon", 
      "input", 
      "discrete time", 
      "algorithm", 
      "Abstract", 
      "time", 
      "error", 
      "problem", 
      "part", 
      "version", 
      "dynamic version", 
      "time horizon", 
      "disturbances", 
      "action"
    ], 
    "name": "Reconstruction of Unknown Disturbances When Measuring Part of Phase Coordinates", 
    "pagination": "415-423", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1148225396"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1134/s0012266122030119"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1134/s0012266122030119", 
      "https://app.dimensions.ai/details/publication/pub.1148225396"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-09-02T16:07", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220902/entities/gbq_results/article/article_939.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1134/s0012266122030119"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1134/s0012266122030119'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1134/s0012266122030119'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1134/s0012266122030119'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1134/s0012266122030119'


 

This table displays all metadata directly associated to this object as RDF triples.

112 TRIPLES      21 PREDICATES      68 URIs      56 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1134/s0012266122030119 schema:about anzsrc-for:01
2 anzsrc-for:0101
3 anzsrc-for:0102
4 schema:author N009b3e4ea38c40b1a24343319ca3f37d
5 schema:citation sg:pub.10.1134/s0081543815080179
6 sg:pub.10.1134/s0965542511060029
7 sg:pub.10.1134/s0965542519110113
8 schema:datePublished 2022-03
9 schema:datePublishedReg 2022-03-01
10 schema:description Abstract We consider the problem of dynamic reconstruction of unknown input actions of a system of nonlinear equations based on inaccurate measurements of part of the phase states of the system taken at discrete times. It is assumed that the system operates on a given finite time horizon. The evolution of the phase state of the system is determined by an unknown input. An exact reconstruction of the true input acting on the system is, generally speaking, impossible due to the measurement error. We present an algorithm for approximate input reconstruction that is based on combining dynamic versions of the smoothing functional method and the residual method and is a special regularizing algorithm for one of the versions of the inverse problem of dynamics.
11 schema:genre article
12 schema:isAccessibleForFree false
13 schema:isPartOf N050a1f6501324d0f98bceec8af0c5387
14 N4171f74329074059898df362b5a0dd53
15 sg:journal.1135881
16 schema:keywords Abstract
17 action
18 algorithm
19 coordinates
20 discrete time
21 disturbances
22 dynamic reconstruction
23 dynamic version
24 dynamics
25 equations
26 error
27 evolution
28 finite time horizon
29 functional method
30 horizon
31 inaccurate measurements
32 input
33 input actions
34 input reconstruction
35 inverse problem
36 measurement error
37 measurements
38 method
39 nonlinear equations
40 part
41 phase coordinates
42 phase state
43 problem
44 reconstruction
45 regularizing algorithm
46 residual method
47 state
48 system
49 time
50 time horizon
51 true input
52 unknown disturbances
53 unknown inputs
54 version
55 schema:name Reconstruction of Unknown Disturbances When Measuring Part of Phase Coordinates
56 schema:pagination 415-423
57 schema:productId N8631544f445541b8a2521af437d50cce
58 Nad311e70496b46db93973ac21df8895a
59 schema:sameAs https://app.dimensions.ai/details/publication/pub.1148225396
60 https://doi.org/10.1134/s0012266122030119
61 schema:sdDatePublished 2022-09-02T16:07
62 schema:sdLicense https://scigraph.springernature.com/explorer/license/
63 schema:sdPublisher Na0d83663a57c486caebfd955edadc009
64 schema:url https://doi.org/10.1134/s0012266122030119
65 sgo:license sg:explorer/license/
66 sgo:sdDataset articles
67 rdf:type schema:ScholarlyArticle
68 N009b3e4ea38c40b1a24343319ca3f37d rdf:first sg:person.015554655611.18
69 rdf:rest rdf:nil
70 N050a1f6501324d0f98bceec8af0c5387 schema:volumeNumber 58
71 rdf:type schema:PublicationVolume
72 N4171f74329074059898df362b5a0dd53 schema:issueNumber 3
73 rdf:type schema:PublicationIssue
74 N8631544f445541b8a2521af437d50cce schema:name dimensions_id
75 schema:value pub.1148225396
76 rdf:type schema:PropertyValue
77 Na0d83663a57c486caebfd955edadc009 schema:name Springer Nature - SN SciGraph project
78 rdf:type schema:Organization
79 Nad311e70496b46db93973ac21df8895a schema:name doi
80 schema:value 10.1134/s0012266122030119
81 rdf:type schema:PropertyValue
82 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
83 schema:name Mathematical Sciences
84 rdf:type schema:DefinedTerm
85 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
86 schema:name Pure Mathematics
87 rdf:type schema:DefinedTerm
88 anzsrc-for:0102 schema:inDefinedTermSet anzsrc-for:
89 schema:name Applied Mathematics
90 rdf:type schema:DefinedTerm
91 sg:journal.1135881 schema:issn 0012-2661
92 1608-3083
93 schema:name Differential Equations
94 schema:publisher Pleiades Publishing
95 rdf:type schema:Periodical
96 sg:person.015554655611.18 schema:affiliation grid-institutes:grid.426536.0
97 schema:familyName Blizorukova
98 schema:givenName M. S.
99 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015554655611.18
100 rdf:type schema:Person
101 sg:pub.10.1134/s0081543815080179 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010663054
102 https://doi.org/10.1134/s0081543815080179
103 rdf:type schema:CreativeWork
104 sg:pub.10.1134/s0965542511060029 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022669050
105 https://doi.org/10.1134/s0965542511060029
106 rdf:type schema:CreativeWork
107 sg:pub.10.1134/s0965542519110113 schema:sameAs https://app.dimensions.ai/details/publication/pub.1123261226
108 https://doi.org/10.1134/s0965542519110113
109 rdf:type schema:CreativeWork
110 grid-institutes:grid.426536.0 schema:alternateName Krasovskii Institute of Mathematics and Mechanics, Ural Branch,Russian Academy of Sciences, 620108, Yekaterinburg, Russia
111 schema:name Krasovskii Institute of Mathematics and Mechanics, Ural Branch,Russian Academy of Sciences, 620108, Yekaterinburg, Russia
112 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...