Lyapunov Function Method for Systems of Difference Equations: Stability with Respect to Part of the Variables View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2022-03

AUTHORS

A. O. Ignatyev

ABSTRACT

For a general system of difference (discrete) equations, using the Lyapunov function method, we obtain a number of sufficient conditions for the stability and asymptotic stability of its solution with respect to part of the variables.

PAGES

405-414

Identifiers

URI

http://scigraph.springernature.com/pub.10.1134/s0012266122030107

DOI

http://dx.doi.org/10.1134/s0012266122030107

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1148225395


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Pure Mathematics", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Institute of Applied Mathematics and Mechanics, Donetsk, Ukraine", 
          "id": "http://www.grid.ac/institutes/grid.424910.a", 
          "name": [
            "Institute of Applied Mathematics and Mechanics, Donetsk, Ukraine"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ignatyev", 
        "givenName": "A. O.", 
        "id": "sg:person.016026430525.37", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016026430525.37"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/s10513-005-0099-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050030923", 
          "https://doi.org/10.1007/s10513-005-0099-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1023/b:simj.0000007470.46246.bd", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020148373", 
          "https://doi.org/10.1023/b:simj.0000007470.46246.bd"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1023/b:dieq.0000028719.32056.fc", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012380936", 
          "https://doi.org/10.1023/b:dieq.0000028719.32056.fc"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4684-9362-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017730925", 
          "https://doi.org/10.1007/978-1-4684-9362-7"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2022-03", 
    "datePublishedReg": "2022-03-01", 
    "description": "Abstract For a general system of difference (discrete) equations, using the Lyapunov function\nmethod, we obtain a number of sufficient conditions for the stability and asymptotic stability of\nits solution with respect to part of the variables.", 
    "genre": "article", 
    "id": "sg:pub.10.1134/s0012266122030107", 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1135881", 
        "issn": [
          "0012-2661", 
          "1608-3083"
        ], 
        "name": "Differential Equations", 
        "publisher": "Pleiades Publishing", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "3", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "58"
      }
    ], 
    "keywords": [
      "difference equations", 
      "Lyapunov function method", 
      "asymptotic stability", 
      "Lyapunov function", 
      "sufficient conditions", 
      "general system", 
      "function method", 
      "equations", 
      "variables", 
      "stability", 
      "solution", 
      "system", 
      "respect", 
      "function", 
      "number", 
      "conditions", 
      "part", 
      "method"
    ], 
    "name": "Lyapunov Function Method for Systems of Difference Equations: Stability with Respect to Part of the Variables", 
    "pagination": "405-414", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1148225395"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1134/s0012266122030107"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1134/s0012266122030107", 
      "https://app.dimensions.ai/details/publication/pub.1148225395"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-09-02T16:07", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220902/entities/gbq_results/article/article_946.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1134/s0012266122030107"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1134/s0012266122030107'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1134/s0012266122030107'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1134/s0012266122030107'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1134/s0012266122030107'


 

This table displays all metadata directly associated to this object as RDF triples.

91 TRIPLES      21 PREDICATES      47 URIs      35 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1134/s0012266122030107 schema:about anzsrc-for:01
2 anzsrc-for:0101
3 schema:author N6a6b3a707cdf4356b6a70a573f3ddcb4
4 schema:citation sg:pub.10.1007/978-1-4684-9362-7
5 sg:pub.10.1007/s10513-005-0099-9
6 sg:pub.10.1023/b:dieq.0000028719.32056.fc
7 sg:pub.10.1023/b:simj.0000007470.46246.bd
8 schema:datePublished 2022-03
9 schema:datePublishedReg 2022-03-01
10 schema:description Abstract For a general system of difference (discrete) equations, using the Lyapunov function method, we obtain a number of sufficient conditions for the stability and asymptotic stability of its solution with respect to part of the variables.
11 schema:genre article
12 schema:isAccessibleForFree false
13 schema:isPartOf N917210e102d942678487b42db89a8f04
14 Nb86b154869544909af47a9ec0c319204
15 sg:journal.1135881
16 schema:keywords Lyapunov function
17 Lyapunov function method
18 asymptotic stability
19 conditions
20 difference equations
21 equations
22 function
23 function method
24 general system
25 method
26 number
27 part
28 respect
29 solution
30 stability
31 sufficient conditions
32 system
33 variables
34 schema:name Lyapunov Function Method for Systems of Difference Equations: Stability with Respect to Part of the Variables
35 schema:pagination 405-414
36 schema:productId N2fc28de37ff04264b91462547a825c69
37 Nf68a5b8f31f3470eb86f5b2affce6483
38 schema:sameAs https://app.dimensions.ai/details/publication/pub.1148225395
39 https://doi.org/10.1134/s0012266122030107
40 schema:sdDatePublished 2022-09-02T16:07
41 schema:sdLicense https://scigraph.springernature.com/explorer/license/
42 schema:sdPublisher N29099ee4826a4126bcc46c2e0463e90f
43 schema:url https://doi.org/10.1134/s0012266122030107
44 sgo:license sg:explorer/license/
45 sgo:sdDataset articles
46 rdf:type schema:ScholarlyArticle
47 N29099ee4826a4126bcc46c2e0463e90f schema:name Springer Nature - SN SciGraph project
48 rdf:type schema:Organization
49 N2fc28de37ff04264b91462547a825c69 schema:name dimensions_id
50 schema:value pub.1148225395
51 rdf:type schema:PropertyValue
52 N6a6b3a707cdf4356b6a70a573f3ddcb4 rdf:first sg:person.016026430525.37
53 rdf:rest rdf:nil
54 N917210e102d942678487b42db89a8f04 schema:issueNumber 3
55 rdf:type schema:PublicationIssue
56 Nb86b154869544909af47a9ec0c319204 schema:volumeNumber 58
57 rdf:type schema:PublicationVolume
58 Nf68a5b8f31f3470eb86f5b2affce6483 schema:name doi
59 schema:value 10.1134/s0012266122030107
60 rdf:type schema:PropertyValue
61 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
62 schema:name Mathematical Sciences
63 rdf:type schema:DefinedTerm
64 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
65 schema:name Pure Mathematics
66 rdf:type schema:DefinedTerm
67 sg:journal.1135881 schema:issn 0012-2661
68 1608-3083
69 schema:name Differential Equations
70 schema:publisher Pleiades Publishing
71 rdf:type schema:Periodical
72 sg:person.016026430525.37 schema:affiliation grid-institutes:grid.424910.a
73 schema:familyName Ignatyev
74 schema:givenName A. O.
75 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016026430525.37
76 rdf:type schema:Person
77 sg:pub.10.1007/978-1-4684-9362-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017730925
78 https://doi.org/10.1007/978-1-4684-9362-7
79 rdf:type schema:CreativeWork
80 sg:pub.10.1007/s10513-005-0099-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050030923
81 https://doi.org/10.1007/s10513-005-0099-9
82 rdf:type schema:CreativeWork
83 sg:pub.10.1023/b:dieq.0000028719.32056.fc schema:sameAs https://app.dimensions.ai/details/publication/pub.1012380936
84 https://doi.org/10.1023/b:dieq.0000028719.32056.fc
85 rdf:type schema:CreativeWork
86 sg:pub.10.1023/b:simj.0000007470.46246.bd schema:sameAs https://app.dimensions.ai/details/publication/pub.1020148373
87 https://doi.org/10.1023/b:simj.0000007470.46246.bd
88 rdf:type schema:CreativeWork
89 grid-institutes:grid.424910.a schema:alternateName Institute of Applied Mathematics and Mechanics, Donetsk, Ukraine
90 schema:name Institute of Applied Mathematics and Mechanics, Donetsk, Ukraine
91 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...