A Riemann–Hilbert Type Problem for a Singularly Perturbed Cauchy–Riemann Equation with a Singularity in the Coefficient View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2022-03

AUTHORS

Yu. S. Fedorov

ABSTRACT

We consider the Riemann–Hilbert problem for a singularly perturbed system of partial differential equations of the Cauchy–Riemann type. Using the Lomov regularization method, we obtain sufficient conditions under which the asymptotic solutions of the problem converge in the usual sense.

PAGES

367-380

Identifiers

URI

http://scigraph.springernature.com/pub.10.1134/s0012266122030077

DOI

http://dx.doi.org/10.1134/s0012266122030077

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1148225392


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Pure Mathematics", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "National Research University \u201cMoscow Power Engineering Institute\u201d, 111250, Moscow, Russia", 
          "id": "http://www.grid.ac/institutes/grid.77852.3f", 
          "name": [
            "National Research University \u201cMoscow Power Engineering Institute\u201d, 111250, Moscow, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Fedorov", 
        "givenName": "Yu. S.", 
        "id": "sg:person.016472156315.50", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016472156315.50"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.3103/s1066369x18030027", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1101549763", 
          "https://doi.org/10.3103/s1066369x18030027"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1134/s0965542520100127", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1132842459", 
          "https://doi.org/10.1134/s0965542520100127"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2022-03", 
    "datePublishedReg": "2022-03-01", 
    "description": "Abstract We consider the Riemann\u2013Hilbert problem for a singularly perturbed system of partial\ndifferential equations of the Cauchy\u2013Riemann type. Using the Lomov regularization method, we\nobtain sufficient conditions under which the asymptotic solutions of the problem converge in the\nusual sense.", 
    "genre": "article", 
    "id": "sg:pub.10.1134/s0012266122030077", 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1135881", 
        "issn": [
          "0012-2661", 
          "1608-3083"
        ], 
        "name": "Differential Equations", 
        "publisher": "Pleiades Publishing", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "3", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "58"
      }
    ], 
    "keywords": [
      "Lomov regularization method", 
      "Cauchy-Riemann equations", 
      "Cauchy\u2013Riemann type", 
      "Riemann\u2013Hilbert problem", 
      "differential equations", 
      "perturbed system", 
      "asymptotic solution", 
      "sufficient conditions", 
      "regularization method", 
      "type problems", 
      "usual sense", 
      "equations", 
      "problem", 
      "singularity", 
      "solution", 
      "coefficient", 
      "sense", 
      "system", 
      "conditions", 
      "Abstract", 
      "types", 
      "method"
    ], 
    "name": "A Riemann\u2013Hilbert Type Problem for a Singularly Perturbed Cauchy\u2013Riemann Equation with a Singularity in the Coefficient", 
    "pagination": "367-380", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1148225392"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1134/s0012266122030077"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1134/s0012266122030077", 
      "https://app.dimensions.ai/details/publication/pub.1148225392"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-11-24T21:09", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20221124/entities/gbq_results/article/article_939.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1134/s0012266122030077"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1134/s0012266122030077'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1134/s0012266122030077'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1134/s0012266122030077'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1134/s0012266122030077'


 

This table displays all metadata directly associated to this object as RDF triples.

87 TRIPLES      21 PREDICATES      49 URIs      39 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1134/s0012266122030077 schema:about anzsrc-for:01
2 anzsrc-for:0101
3 schema:author Ndf4c86bd0a694cbc82cc4e0e18b91c78
4 schema:citation sg:pub.10.1134/s0965542520100127
5 sg:pub.10.3103/s1066369x18030027
6 schema:datePublished 2022-03
7 schema:datePublishedReg 2022-03-01
8 schema:description Abstract We consider the Riemann–Hilbert problem for a singularly perturbed system of partial differential equations of the Cauchy–Riemann type. Using the Lomov regularization method, we obtain sufficient conditions under which the asymptotic solutions of the problem converge in the usual sense.
9 schema:genre article
10 schema:isAccessibleForFree false
11 schema:isPartOf N13b89b6438354c6999dc22a0e7447f25
12 N80c23baa660149f5a637709bce0771e3
13 sg:journal.1135881
14 schema:keywords Abstract
15 Cauchy-Riemann equations
16 Cauchy–Riemann type
17 Lomov regularization method
18 Riemann–Hilbert problem
19 asymptotic solution
20 coefficient
21 conditions
22 differential equations
23 equations
24 method
25 perturbed system
26 problem
27 regularization method
28 sense
29 singularity
30 solution
31 sufficient conditions
32 system
33 type problems
34 types
35 usual sense
36 schema:name A Riemann–Hilbert Type Problem for a Singularly Perturbed Cauchy–Riemann Equation with a Singularity in the Coefficient
37 schema:pagination 367-380
38 schema:productId N2117aa2d73e142249f394edb0bb3e2a3
39 N26449df9efb1458b92a0e6169591188b
40 schema:sameAs https://app.dimensions.ai/details/publication/pub.1148225392
41 https://doi.org/10.1134/s0012266122030077
42 schema:sdDatePublished 2022-11-24T21:09
43 schema:sdLicense https://scigraph.springernature.com/explorer/license/
44 schema:sdPublisher Nad60e34c867e4f2bb44b4bc2488a7bdd
45 schema:url https://doi.org/10.1134/s0012266122030077
46 sgo:license sg:explorer/license/
47 sgo:sdDataset articles
48 rdf:type schema:ScholarlyArticle
49 N13b89b6438354c6999dc22a0e7447f25 schema:issueNumber 3
50 rdf:type schema:PublicationIssue
51 N2117aa2d73e142249f394edb0bb3e2a3 schema:name dimensions_id
52 schema:value pub.1148225392
53 rdf:type schema:PropertyValue
54 N26449df9efb1458b92a0e6169591188b schema:name doi
55 schema:value 10.1134/s0012266122030077
56 rdf:type schema:PropertyValue
57 N80c23baa660149f5a637709bce0771e3 schema:volumeNumber 58
58 rdf:type schema:PublicationVolume
59 Nad60e34c867e4f2bb44b4bc2488a7bdd schema:name Springer Nature - SN SciGraph project
60 rdf:type schema:Organization
61 Ndf4c86bd0a694cbc82cc4e0e18b91c78 rdf:first sg:person.016472156315.50
62 rdf:rest rdf:nil
63 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
64 schema:name Mathematical Sciences
65 rdf:type schema:DefinedTerm
66 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
67 schema:name Pure Mathematics
68 rdf:type schema:DefinedTerm
69 sg:journal.1135881 schema:issn 0012-2661
70 1608-3083
71 schema:name Differential Equations
72 schema:publisher Pleiades Publishing
73 rdf:type schema:Periodical
74 sg:person.016472156315.50 schema:affiliation grid-institutes:grid.77852.3f
75 schema:familyName Fedorov
76 schema:givenName Yu. S.
77 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016472156315.50
78 rdf:type schema:Person
79 sg:pub.10.1134/s0965542520100127 schema:sameAs https://app.dimensions.ai/details/publication/pub.1132842459
80 https://doi.org/10.1134/s0965542520100127
81 rdf:type schema:CreativeWork
82 sg:pub.10.3103/s1066369x18030027 schema:sameAs https://app.dimensions.ai/details/publication/pub.1101549763
83 https://doi.org/10.3103/s1066369x18030027
84 rdf:type schema:CreativeWork
85 grid-institutes:grid.77852.3f schema:alternateName National Research University “Moscow Power Engineering Institute”, 111250, Moscow, Russia
86 schema:name National Research University “Moscow Power Engineering Institute”, 111250, Moscow, Russia
87 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...