Pseudoholomorphic and -Pseudoregular Solutions of Singularly Perturbed Problems View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2022-03

AUTHORS

V. I. Kachalov

ABSTRACT

For nonlinear evolution equations in a Banach space that depend in two ways—regularly and singularly—on a small parameter, we construct \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varepsilon $$\end{document}-pseudoregular solutions of the Cauchy problem, i.e., its formal solutions representable as series in powers of the small parameter with coefficients that depend on it in a singular way and converging in a certain neighborhood of the zero value of the parameter uniformly over a given time interval. Sufficient conditions are obtained under which the sum of such a series is an exact, and hence pseudoholomorphic, solution of this problem. More... »

PAGES

357-366

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1134/s0012266122030065

DOI

http://dx.doi.org/10.1134/s0012266122030065

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1148225391


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0102", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Applied Mathematics", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "National Research University \u201cMoscow Power Engineering Institute\u201d, 111250, Moscow, Russia", 
          "id": "http://www.grid.ac/institutes/grid.77852.3f", 
          "name": [
            "National Research University \u201cMoscow Power Engineering Institute\u201d, 111250, Moscow, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kachalov", 
        "givenName": "V. I.", 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/978-3-642-53393-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1109710052", 
          "https://doi.org/10.1007/978-3-642-53393-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.3103/s1066369x17060068", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1085430251", 
          "https://doi.org/10.3103/s1066369x17060068"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2022-03", 
    "datePublishedReg": "2022-03-01", 
    "description": "Abstract For nonlinear evolution equations in a Banach space that depend in two\nways\u2014regularly and singularly\u2014on a small parameter, we construct\n\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$\\varepsilon\n$$\\end{document}-pseudoregular solutions of the Cauchy problem,\ni.e., its formal solutions representable as series in powers of the small parameter with coefficients\nthat depend on it in a singular way and converging in a certain neighborhood of the zero value of\nthe parameter uniformly over a given time interval. Sufficient conditions are obtained under which\nthe sum of such a series is an exact, and hence pseudoholomorphic, solution of this problem.", 
    "genre": "article", 
    "id": "sg:pub.10.1134/s0012266122030065", 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1135881", 
        "issn": [
          "0012-2661", 
          "1608-3083"
        ], 
        "name": "Differential Equations", 
        "publisher": "Pleiades Publishing", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "3", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "58"
      }
    ], 
    "keywords": [
      "small parameter", 
      "nonlinear evolution equations", 
      "singularly perturbed problem", 
      "evolution equations", 
      "Cauchy problem", 
      "perturbed problem", 
      "Banach spaces", 
      "formal solution", 
      "sufficient conditions", 
      "certain neighborhood", 
      "solution", 
      "problem", 
      "equations", 
      "parameters", 
      "singular way", 
      "time interval", 
      "space", 
      "sum", 
      "converging", 
      "neighborhood", 
      "coefficient", 
      "power", 
      "way", 
      "series", 
      "conditions", 
      "interval", 
      "values"
    ], 
    "name": "Pseudoholomorphic and -Pseudoregular Solutions of Singularly Perturbed Problems", 
    "pagination": "357-366", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1148225391"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1134/s0012266122030065"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1134/s0012266122030065", 
      "https://app.dimensions.ai/details/publication/pub.1148225391"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-09-02T16:07", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220902/entities/gbq_results/article/article_934.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1134/s0012266122030065"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1134/s0012266122030065'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1134/s0012266122030065'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1134/s0012266122030065'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1134/s0012266122030065'


 

This table displays all metadata directly associated to this object as RDF triples.

91 TRIPLES      21 PREDICATES      54 URIs      44 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1134/s0012266122030065 schema:about anzsrc-for:01
2 anzsrc-for:0102
3 schema:author N76c72c089cae4a9eaccea4a0515d8e14
4 schema:citation sg:pub.10.1007/978-3-642-53393-8
5 sg:pub.10.3103/s1066369x17060068
6 schema:datePublished 2022-03
7 schema:datePublishedReg 2022-03-01
8 schema:description Abstract For nonlinear evolution equations in a Banach space that depend in two ways—regularly and singularly—on a small parameter, we construct \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varepsilon $$\end{document}-pseudoregular solutions of the Cauchy problem, i.e., its formal solutions representable as series in powers of the small parameter with coefficients that depend on it in a singular way and converging in a certain neighborhood of the zero value of the parameter uniformly over a given time interval. Sufficient conditions are obtained under which the sum of such a series is an exact, and hence pseudoholomorphic, solution of this problem.
9 schema:genre article
10 schema:isAccessibleForFree false
11 schema:isPartOf N67c88892e3d14517a857b6b2126d8958
12 Ndb591634896e43fabfcbb5d4c49cfd77
13 sg:journal.1135881
14 schema:keywords Banach spaces
15 Cauchy problem
16 certain neighborhood
17 coefficient
18 conditions
19 converging
20 equations
21 evolution equations
22 formal solution
23 interval
24 neighborhood
25 nonlinear evolution equations
26 parameters
27 perturbed problem
28 power
29 problem
30 series
31 singular way
32 singularly perturbed problem
33 small parameter
34 solution
35 space
36 sufficient conditions
37 sum
38 time interval
39 values
40 way
41 schema:name Pseudoholomorphic and -Pseudoregular Solutions of Singularly Perturbed Problems
42 schema:pagination 357-366
43 schema:productId N08163097d8954a44a6b84cb853fad9c2
44 Ne46044fa3fe14f18a1fdba2ab657e15c
45 schema:sameAs https://app.dimensions.ai/details/publication/pub.1148225391
46 https://doi.org/10.1134/s0012266122030065
47 schema:sdDatePublished 2022-09-02T16:07
48 schema:sdLicense https://scigraph.springernature.com/explorer/license/
49 schema:sdPublisher N48f55168d6dd4f05897d18c3a9d29224
50 schema:url https://doi.org/10.1134/s0012266122030065
51 sgo:license sg:explorer/license/
52 sgo:sdDataset articles
53 rdf:type schema:ScholarlyArticle
54 N08163097d8954a44a6b84cb853fad9c2 schema:name dimensions_id
55 schema:value pub.1148225391
56 rdf:type schema:PropertyValue
57 N48f55168d6dd4f05897d18c3a9d29224 schema:name Springer Nature - SN SciGraph project
58 rdf:type schema:Organization
59 N67c88892e3d14517a857b6b2126d8958 schema:volumeNumber 58
60 rdf:type schema:PublicationVolume
61 N76c72c089cae4a9eaccea4a0515d8e14 rdf:first N8553d6421de345fab419b0e51b1f734b
62 rdf:rest rdf:nil
63 N8553d6421de345fab419b0e51b1f734b schema:affiliation grid-institutes:grid.77852.3f
64 schema:familyName Kachalov
65 schema:givenName V. I.
66 rdf:type schema:Person
67 Ndb591634896e43fabfcbb5d4c49cfd77 schema:issueNumber 3
68 rdf:type schema:PublicationIssue
69 Ne46044fa3fe14f18a1fdba2ab657e15c schema:name doi
70 schema:value 10.1134/s0012266122030065
71 rdf:type schema:PropertyValue
72 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
73 schema:name Mathematical Sciences
74 rdf:type schema:DefinedTerm
75 anzsrc-for:0102 schema:inDefinedTermSet anzsrc-for:
76 schema:name Applied Mathematics
77 rdf:type schema:DefinedTerm
78 sg:journal.1135881 schema:issn 0012-2661
79 1608-3083
80 schema:name Differential Equations
81 schema:publisher Pleiades Publishing
82 rdf:type schema:Periodical
83 sg:pub.10.1007/978-3-642-53393-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1109710052
84 https://doi.org/10.1007/978-3-642-53393-8
85 rdf:type schema:CreativeWork
86 sg:pub.10.3103/s1066369x17060068 schema:sameAs https://app.dimensions.ai/details/publication/pub.1085430251
87 https://doi.org/10.3103/s1066369x17060068
88 rdf:type schema:CreativeWork
89 grid-institutes:grid.77852.3f schema:alternateName National Research University “Moscow Power Engineering Institute”, 111250, Moscow, Russia
90 schema:name National Research University “Moscow Power Engineering Institute”, 111250, Moscow, Russia
91 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...