Development of the Lomov Regularization Method for a Singularly Perturbed Cauchy Problem and a Boundary Value Problem on the Half-Line ... View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2022-03

AUTHORS

A. G. Eliseev, T. A. Ratnikova, D. A. Shaposhnikova

ABSTRACT

The Lomov regularization method was developed for the Cauchy problem and the mixed problem for a singularly perturbed parabolic equation in the case of a “simple” rational turning point of the limit operator. The maximum principle is used to prove the asymptotic convergence of the resulting series.

PAGES

314-340

References to SciGraph publications

  • 2004-05. Singularly Perturbed Problems in Case of Exchange of Stabilities in JOURNAL OF MATHEMATICAL SCIENCES
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1134/s0012266122030041

    DOI

    http://dx.doi.org/10.1134/s0012266122030041

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1148225390


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Mathematical Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Pure Mathematics", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "National Research University \u201cMoscow Power Engineering Institute\u201d, 111250, Moscow, Russia", 
              "id": "http://www.grid.ac/institutes/grid.77852.3f", 
              "name": [
                "National Research University \u201cMoscow Power Engineering Institute\u201d, 111250, Moscow, Russia"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Eliseev", 
            "givenName": "A. G.", 
            "id": "sg:person.014273532721.93", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014273532721.93"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "National Research University \u201cMoscow Power Engineering Institute\u201d, 111250, Moscow, Russia", 
              "id": "http://www.grid.ac/institutes/grid.77852.3f", 
              "name": [
                "National Research University \u201cMoscow Power Engineering Institute\u201d, 111250, Moscow, Russia"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Ratnikova", 
            "givenName": "T. A.", 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "National Research University \u201cMoscow Power Engineering Institute\u201d, 111250, Moscow, Russia", 
              "id": "http://www.grid.ac/institutes/grid.77852.3f", 
              "name": [
                "National Research University \u201cMoscow Power Engineering Institute\u201d, 111250, Moscow, Russia"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Shaposhnikova", 
            "givenName": "D. A.", 
            "id": "sg:person.013577660774.24", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013577660774.24"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1023/b:joth.0000021571.21423.52", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1014643972", 
              "https://doi.org/10.1023/b:joth.0000021571.21423.52"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2022-03", 
        "datePublishedReg": "2022-03-01", 
        "description": "Abstract The Lomov regularization method was developed for the Cauchy problem and the mixed\nproblem for a singularly perturbed parabolic equation in the case of a \u201csimple\u201d rational turning\npoint of the limit operator. The maximum principle is used to prove the asymptotic convergence\nof the resulting series.", 
        "genre": "article", 
        "id": "sg:pub.10.1134/s0012266122030041", 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1135881", 
            "issn": [
              "0012-2661", 
              "1608-3083"
            ], 
            "name": "Differential Equations", 
            "publisher": "Pleiades Publishing", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "3", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "58"
          }
        ], 
        "keywords": [
          "Lomov regularization method", 
          "parabolic equations", 
          "Cauchy problem", 
          "regularization method", 
          "boundary value problem", 
          "maximum principle", 
          "asymptotic convergence", 
          "value problem", 
          "limit operator", 
          "equations", 
          "problem", 
          "convergence", 
          "operators", 
          "point", 
          "principles", 
          "turning point", 
          "cases", 
          "Abstract", 
          "series", 
          "development", 
          "method"
        ], 
        "name": "Development of the Lomov Regularization Method for a Singularly Perturbed Cauchy Problem and a Boundary Value Problem on the Half-Line for Parabolic Equations with a \u201cSimple\u201d Rational Turning Point", 
        "pagination": "314-340", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1148225390"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1134/s0012266122030041"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1134/s0012266122030041", 
          "https://app.dimensions.ai/details/publication/pub.1148225390"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2022-10-01T06:51", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20221001/entities/gbq_results/article/article_955.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1134/s0012266122030041"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1134/s0012266122030041'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1134/s0012266122030041'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1134/s0012266122030041'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1134/s0012266122030041'


     

    This table displays all metadata directly associated to this object as RDF triples.

    95 TRIPLES      21 PREDICATES      47 URIs      38 LITERALS      6 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1134/s0012266122030041 schema:about anzsrc-for:01
    2 anzsrc-for:0101
    3 schema:author N3b4bc3c44b654c93a484d20828592826
    4 schema:citation sg:pub.10.1023/b:joth.0000021571.21423.52
    5 schema:datePublished 2022-03
    6 schema:datePublishedReg 2022-03-01
    7 schema:description Abstract The Lomov regularization method was developed for the Cauchy problem and the mixed problem for a singularly perturbed parabolic equation in the case of a “simple” rational turning point of the limit operator. The maximum principle is used to prove the asymptotic convergence of the resulting series.
    8 schema:genre article
    9 schema:isAccessibleForFree false
    10 schema:isPartOf N330e54acb0e3490ab1ed8e35bfc6d320
    11 N509b926bc0934a22b878a431b5db6c37
    12 sg:journal.1135881
    13 schema:keywords Abstract
    14 Cauchy problem
    15 Lomov regularization method
    16 asymptotic convergence
    17 boundary value problem
    18 cases
    19 convergence
    20 development
    21 equations
    22 limit operator
    23 maximum principle
    24 method
    25 operators
    26 parabolic equations
    27 point
    28 principles
    29 problem
    30 regularization method
    31 series
    32 turning point
    33 value problem
    34 schema:name Development of the Lomov Regularization Method for a Singularly Perturbed Cauchy Problem and a Boundary Value Problem on the Half-Line for Parabolic Equations with a “Simple” Rational Turning Point
    35 schema:pagination 314-340
    36 schema:productId N5ce3216b847c4186ae9b9fd1073f2896
    37 Nd9125ada6fac4894978d4a97b2dd6ffc
    38 schema:sameAs https://app.dimensions.ai/details/publication/pub.1148225390
    39 https://doi.org/10.1134/s0012266122030041
    40 schema:sdDatePublished 2022-10-01T06:51
    41 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    42 schema:sdPublisher N8ebe6d2a121f47b6bdf24679543a806f
    43 schema:url https://doi.org/10.1134/s0012266122030041
    44 sgo:license sg:explorer/license/
    45 sgo:sdDataset articles
    46 rdf:type schema:ScholarlyArticle
    47 N272c715bedf34d03bcabf0c7f9281ceb schema:affiliation grid-institutes:grid.77852.3f
    48 schema:familyName Ratnikova
    49 schema:givenName T. A.
    50 rdf:type schema:Person
    51 N330e54acb0e3490ab1ed8e35bfc6d320 schema:volumeNumber 58
    52 rdf:type schema:PublicationVolume
    53 N3b4bc3c44b654c93a484d20828592826 rdf:first sg:person.014273532721.93
    54 rdf:rest N9cedd3cd0e5d4213892735ce989e5f45
    55 N509b926bc0934a22b878a431b5db6c37 schema:issueNumber 3
    56 rdf:type schema:PublicationIssue
    57 N5ce3216b847c4186ae9b9fd1073f2896 schema:name dimensions_id
    58 schema:value pub.1148225390
    59 rdf:type schema:PropertyValue
    60 N8ebe6d2a121f47b6bdf24679543a806f schema:name Springer Nature - SN SciGraph project
    61 rdf:type schema:Organization
    62 N9cedd3cd0e5d4213892735ce989e5f45 rdf:first N272c715bedf34d03bcabf0c7f9281ceb
    63 rdf:rest Ncba1d1337e7c409987781df5ed96dc51
    64 Ncba1d1337e7c409987781df5ed96dc51 rdf:first sg:person.013577660774.24
    65 rdf:rest rdf:nil
    66 Nd9125ada6fac4894978d4a97b2dd6ffc schema:name doi
    67 schema:value 10.1134/s0012266122030041
    68 rdf:type schema:PropertyValue
    69 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
    70 schema:name Mathematical Sciences
    71 rdf:type schema:DefinedTerm
    72 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
    73 schema:name Pure Mathematics
    74 rdf:type schema:DefinedTerm
    75 sg:journal.1135881 schema:issn 0012-2661
    76 1608-3083
    77 schema:name Differential Equations
    78 schema:publisher Pleiades Publishing
    79 rdf:type schema:Periodical
    80 sg:person.013577660774.24 schema:affiliation grid-institutes:grid.77852.3f
    81 schema:familyName Shaposhnikova
    82 schema:givenName D. A.
    83 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013577660774.24
    84 rdf:type schema:Person
    85 sg:person.014273532721.93 schema:affiliation grid-institutes:grid.77852.3f
    86 schema:familyName Eliseev
    87 schema:givenName A. G.
    88 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014273532721.93
    89 rdf:type schema:Person
    90 sg:pub.10.1023/b:joth.0000021571.21423.52 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014643972
    91 https://doi.org/10.1023/b:joth.0000021571.21423.52
    92 rdf:type schema:CreativeWork
    93 grid-institutes:grid.77852.3f schema:alternateName National Research University “Moscow Power Engineering Institute”, 111250, Moscow, Russia
    94 schema:name National Research University “Moscow Power Engineering Institute”, 111250, Moscow, Russia
    95 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...