On the Cauchy Problem for a One-Dimensional Conservation Law with Initial Conditions Coinciding with a Power or Exponential Function at ... View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2022-03

AUTHORS

L. V. Gargyants

ABSTRACT

For a first-order quasilinear equation with a power-law flux function, generalized entropy solutions of the Cauchy problems are constructed with initial conditions coinciding with a power or exponential function at minus infinity. In the case of an exponentially growing initial condition, the one-sided periodicity in the spatial variable of the solution obtained is established. The nonexistence of positive solutions for the Cauchy problems in question is proved. More... »

PAGES

304-313

Identifiers

URI

http://scigraph.springernature.com/pub.10.1134/s001226612203003x

DOI

http://dx.doi.org/10.1134/s001226612203003x

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1148225389


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Pure Mathematics", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Bauman Moscow State Technical University, 105005, Moscow, Russia", 
          "id": "http://www.grid.ac/institutes/grid.61569.3d", 
          "name": [
            "Bauman Moscow State Technical University, 105005, Moscow, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Gargyants", 
        "givenName": "L. V.", 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1134/s106192081703013x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1091429700", 
          "https://doi.org/10.1134/s106192081703013x"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1134/s0001434618070222", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1107432636", 
          "https://doi.org/10.1134/s0001434618070222"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1134/s0012266116040066", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040712374", 
          "https://doi.org/10.1134/s0012266116040066"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01193828", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041989283", 
          "https://doi.org/10.1007/bf01193828"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10958-008-0156-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039739553", 
          "https://doi.org/10.1007/s10958-008-0156-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1023/a:1019273927768", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021656008", 
          "https://doi.org/10.1023/a:1019273927768"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2022-03", 
    "datePublishedReg": "2022-03-01", 
    "description": "Abstract For a first-order quasilinear equation with a power-law flux function, generalized entropy\nsolutions of the Cauchy problems are constructed with initial conditions coinciding with a power\nor exponential function at minus infinity. In the case of an exponentially growing initial condition,\nthe one-sided periodicity in the spatial variable of the solution obtained is established. The\nnonexistence of positive solutions for the Cauchy problems in question is proved.", 
    "genre": "article", 
    "id": "sg:pub.10.1134/s001226612203003x", 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1135881", 
        "issn": [
          "0012-2661", 
          "1608-3083"
        ], 
        "name": "Differential Equations", 
        "publisher": "Pleiades Publishing", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "3", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "58"
      }
    ], 
    "keywords": [
      "Cauchy problem", 
      "initial conditions", 
      "first-order quasilinear equations", 
      "one-dimensional conservation laws", 
      "quasilinear equations", 
      "flux function", 
      "conservation laws", 
      "positive solutions", 
      "spatial variables", 
      "exponential function", 
      "minus infinity", 
      "infinity", 
      "problem", 
      "solution", 
      "equations", 
      "nonexistence", 
      "function", 
      "law", 
      "power", 
      "conditions", 
      "periodicity", 
      "variables", 
      "cases", 
      "questions"
    ], 
    "name": "On the Cauchy Problem for a One-Dimensional Conservation Law with Initial Conditions Coinciding with a Power or Exponential Function at Infinity", 
    "pagination": "304-313", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1148225389"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1134/s001226612203003x"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1134/s001226612203003x", 
      "https://app.dimensions.ai/details/publication/pub.1148225389"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-09-02T16:06", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220902/entities/gbq_results/article/article_931.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1134/s001226612203003x"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1134/s001226612203003x'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1134/s001226612203003x'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1134/s001226612203003x'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1134/s001226612203003x'


 

This table displays all metadata directly associated to this object as RDF triples.

104 TRIPLES      21 PREDICATES      55 URIs      41 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1134/s001226612203003x schema:about anzsrc-for:01
2 anzsrc-for:0101
3 schema:author Nbeb07735b08a4691bbaac9a1daa5c881
4 schema:citation sg:pub.10.1007/bf01193828
5 sg:pub.10.1007/s10958-008-0156-3
6 sg:pub.10.1023/a:1019273927768
7 sg:pub.10.1134/s0001434618070222
8 sg:pub.10.1134/s0012266116040066
9 sg:pub.10.1134/s106192081703013x
10 schema:datePublished 2022-03
11 schema:datePublishedReg 2022-03-01
12 schema:description Abstract For a first-order quasilinear equation with a power-law flux function, generalized entropy solutions of the Cauchy problems are constructed with initial conditions coinciding with a power or exponential function at minus infinity. In the case of an exponentially growing initial condition, the one-sided periodicity in the spatial variable of the solution obtained is established. The nonexistence of positive solutions for the Cauchy problems in question is proved.
13 schema:genre article
14 schema:isAccessibleForFree false
15 schema:isPartOf Nbcd8b6c234d34f568ab63a325a4abe18
16 Nc4605e86c293451d9023ee214b239c52
17 sg:journal.1135881
18 schema:keywords Cauchy problem
19 cases
20 conditions
21 conservation laws
22 equations
23 exponential function
24 first-order quasilinear equations
25 flux function
26 function
27 infinity
28 initial conditions
29 law
30 minus infinity
31 nonexistence
32 one-dimensional conservation laws
33 periodicity
34 positive solutions
35 power
36 problem
37 quasilinear equations
38 questions
39 solution
40 spatial variables
41 variables
42 schema:name On the Cauchy Problem for a One-Dimensional Conservation Law with Initial Conditions Coinciding with a Power or Exponential Function at Infinity
43 schema:pagination 304-313
44 schema:productId Ndf6f30ad23d944728434a1b097c95db4
45 Nf3b4071f1d3542f2b08fb8a4a6f2c2d6
46 schema:sameAs https://app.dimensions.ai/details/publication/pub.1148225389
47 https://doi.org/10.1134/s001226612203003x
48 schema:sdDatePublished 2022-09-02T16:06
49 schema:sdLicense https://scigraph.springernature.com/explorer/license/
50 schema:sdPublisher Nda804d3709e345b99b23238824cc73ae
51 schema:url https://doi.org/10.1134/s001226612203003x
52 sgo:license sg:explorer/license/
53 sgo:sdDataset articles
54 rdf:type schema:ScholarlyArticle
55 Nbcd8b6c234d34f568ab63a325a4abe18 schema:volumeNumber 58
56 rdf:type schema:PublicationVolume
57 Nbeb07735b08a4691bbaac9a1daa5c881 rdf:first Neb9625e5d7ca428b8432b6890f9eca60
58 rdf:rest rdf:nil
59 Nc4605e86c293451d9023ee214b239c52 schema:issueNumber 3
60 rdf:type schema:PublicationIssue
61 Nda804d3709e345b99b23238824cc73ae schema:name Springer Nature - SN SciGraph project
62 rdf:type schema:Organization
63 Ndf6f30ad23d944728434a1b097c95db4 schema:name doi
64 schema:value 10.1134/s001226612203003x
65 rdf:type schema:PropertyValue
66 Neb9625e5d7ca428b8432b6890f9eca60 schema:affiliation grid-institutes:grid.61569.3d
67 schema:familyName Gargyants
68 schema:givenName L. V.
69 rdf:type schema:Person
70 Nf3b4071f1d3542f2b08fb8a4a6f2c2d6 schema:name dimensions_id
71 schema:value pub.1148225389
72 rdf:type schema:PropertyValue
73 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
74 schema:name Mathematical Sciences
75 rdf:type schema:DefinedTerm
76 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
77 schema:name Pure Mathematics
78 rdf:type schema:DefinedTerm
79 sg:journal.1135881 schema:issn 0012-2661
80 1608-3083
81 schema:name Differential Equations
82 schema:publisher Pleiades Publishing
83 rdf:type schema:Periodical
84 sg:pub.10.1007/bf01193828 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041989283
85 https://doi.org/10.1007/bf01193828
86 rdf:type schema:CreativeWork
87 sg:pub.10.1007/s10958-008-0156-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039739553
88 https://doi.org/10.1007/s10958-008-0156-3
89 rdf:type schema:CreativeWork
90 sg:pub.10.1023/a:1019273927768 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021656008
91 https://doi.org/10.1023/a:1019273927768
92 rdf:type schema:CreativeWork
93 sg:pub.10.1134/s0001434618070222 schema:sameAs https://app.dimensions.ai/details/publication/pub.1107432636
94 https://doi.org/10.1134/s0001434618070222
95 rdf:type schema:CreativeWork
96 sg:pub.10.1134/s0012266116040066 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040712374
97 https://doi.org/10.1134/s0012266116040066
98 rdf:type schema:CreativeWork
99 sg:pub.10.1134/s106192081703013x schema:sameAs https://app.dimensions.ai/details/publication/pub.1091429700
100 https://doi.org/10.1134/s106192081703013x
101 rdf:type schema:CreativeWork
102 grid-institutes:grid.61569.3d schema:alternateName Bauman Moscow State Technical University, 105005, Moscow, Russia
103 schema:name Bauman Moscow State Technical University, 105005, Moscow, Russia
104 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...