Chaotic Dynamics of Homogeneous Yang–Mills Fields with Three Degrees of Freedom View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2022-03

AUTHORS

N. A. Magnitskii

ABSTRACT

We consider a scenario of transition to chaotic dynamics in a Hamiltonian system of homogeneous Yang–Mills fields with three degrees of freedom in the presence of the Higgs mechanism. It is shown that in this system, as in other Hamiltonian and conservative systems of equations, the key role at the initial stage of the transition from regular to chaotic motion is played by the nonlocal multiplication of hyperbolic and elliptic cycles and tori around elliptic cycles in the vicinity of separatrix surfaces of hyperbolic cycles. It is numerically established that new elliptic and hyperbolic cycles of the Hamiltonian system arise as a result of not only saddle–node bifurcations and pitchfork bifurcations but also of a subharmonic cascade of bifurcations, typical of the universal bifurcation scenario of transition to chaos in accordance with the Feigenbaum–Sharkovskii–Magnitskii (FSM) theory. More... »

PAGES

296-303

Identifiers

URI

http://scigraph.springernature.com/pub.10.1134/s0012266122030028

DOI

http://dx.doi.org/10.1134/s0012266122030028

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1148225388


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Pure Mathematics", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Federal Research Center \u201cComputer Science and Control,\u201dRussian Academy of Sciences, 119333, Moscow, Russia", 
          "id": "http://www.grid.ac/institutes/grid.4886.2", 
          "name": [
            "Federal Research Center \u201cComputer Science and Control,\u201dRussian Academy of Sciences, 119333, Moscow, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Magnitskii", 
        "givenName": "N. A.", 
        "id": "sg:person.07542754031.25", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07542754031.25"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1134/s0012266109050048", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012866682", 
          "https://doi.org/10.1134/s0012266109050048"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1134/s0012266110110145", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011605021", 
          "https://doi.org/10.1134/s0012266110110145"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1134/s0012266109120039", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032331451", 
          "https://doi.org/10.1134/s0012266109120039"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1134/s0012266108120045", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011073704", 
          "https://doi.org/10.1134/s0012266108120045"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2022-03", 
    "datePublishedReg": "2022-03-01", 
    "description": "Abstract We consider a scenario of transition to chaotic dynamics in a Hamiltonian system of\nhomogeneous Yang\u2013Mills fields with three degrees of freedom in the presence of the Higgs\nmechanism. It is shown that in this system, as in other Hamiltonian and conservative systems of\nequations, the key role at the initial stage of the transition from regular to chaotic motion is\nplayed by the nonlocal multiplication of hyperbolic and elliptic cycles and tori around elliptic\ncycles in the vicinity of separatrix surfaces of hyperbolic cycles. It is numerically established that\nnew elliptic and hyperbolic cycles of the Hamiltonian system arise as a result of not only\nsaddle\u2013node bifurcations and pitchfork bifurcations but also of a subharmonic cascade of\nbifurcations, typical of the universal bifurcation scenario of transition to chaos in accordance with\nthe Feigenbaum\u2013Sharkovskii\u2013Magnitskii (FSM) theory.", 
    "genre": "article", 
    "id": "sg:pub.10.1134/s0012266122030028", 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1135881", 
        "issn": [
          "0012-2661", 
          "1608-3083"
        ], 
        "name": "Differential Equations", 
        "publisher": "Pleiades Publishing", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "3", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "58"
      }
    ], 
    "keywords": [
      "Hamiltonian systems", 
      "chaotic dynamics", 
      "degrees of freedom", 
      "hyperbolic cycles", 
      "Yang-Mills fields", 
      "scenario of transition", 
      "Magnitskii\u2019s theory", 
      "Feigenbaum\u2013Sharkovskii", 
      "saddle-node bifurcation", 
      "chaotic motion", 
      "conservative systems", 
      "separatrix surface", 
      "pitchfork bifurcation", 
      "Yang-Mills", 
      "bifurcation scenario", 
      "subharmonic cascade", 
      "bifurcation", 
      "elliptic cycles", 
      "dynamics", 
      "elliptic", 
      "equations", 
      "hyperbolic", 
      "torus", 
      "chaos", 
      "freedom", 
      "transition", 
      "motion", 
      "theory", 
      "system", 
      "field", 
      "multiplication", 
      "scenarios", 
      "vicinity", 
      "Higgs", 
      "degree", 
      "initial stage", 
      "results", 
      "surface", 
      "Abstract", 
      "cascade", 
      "accordance", 
      "key role", 
      "cycle", 
      "presence", 
      "stage", 
      "mechanism", 
      "role"
    ], 
    "name": "Chaotic Dynamics of Homogeneous Yang\u2013Mills Fields with Three Degrees of Freedom", 
    "pagination": "296-303", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1148225388"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1134/s0012266122030028"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1134/s0012266122030028", 
      "https://app.dimensions.ai/details/publication/pub.1148225388"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-09-02T16:07", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220902/entities/gbq_results/article/article_925.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1134/s0012266122030028"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1134/s0012266122030028'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1134/s0012266122030028'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1134/s0012266122030028'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1134/s0012266122030028'


 

This table displays all metadata directly associated to this object as RDF triples.

120 TRIPLES      21 PREDICATES      76 URIs      64 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1134/s0012266122030028 schema:about anzsrc-for:01
2 anzsrc-for:0101
3 schema:author N584ec2f6a1134586b774b0973e561720
4 schema:citation sg:pub.10.1134/s0012266108120045
5 sg:pub.10.1134/s0012266109050048
6 sg:pub.10.1134/s0012266109120039
7 sg:pub.10.1134/s0012266110110145
8 schema:datePublished 2022-03
9 schema:datePublishedReg 2022-03-01
10 schema:description Abstract We consider a scenario of transition to chaotic dynamics in a Hamiltonian system of homogeneous Yang–Mills fields with three degrees of freedom in the presence of the Higgs mechanism. It is shown that in this system, as in other Hamiltonian and conservative systems of equations, the key role at the initial stage of the transition from regular to chaotic motion is played by the nonlocal multiplication of hyperbolic and elliptic cycles and tori around elliptic cycles in the vicinity of separatrix surfaces of hyperbolic cycles. It is numerically established that new elliptic and hyperbolic cycles of the Hamiltonian system arise as a result of not only saddle–node bifurcations and pitchfork bifurcations but also of a subharmonic cascade of bifurcations, typical of the universal bifurcation scenario of transition to chaos in accordance with the Feigenbaum–Sharkovskii–Magnitskii (FSM) theory.
11 schema:genre article
12 schema:isAccessibleForFree false
13 schema:isPartOf Naa98025db09a4b959791de437ed01178
14 Nde3f7250ccfa49918252a7cab0000c52
15 sg:journal.1135881
16 schema:keywords Abstract
17 Feigenbaum–Sharkovskii
18 Hamiltonian systems
19 Higgs
20 Magnitskii’s theory
21 Yang-Mills
22 Yang-Mills fields
23 accordance
24 bifurcation
25 bifurcation scenario
26 cascade
27 chaos
28 chaotic dynamics
29 chaotic motion
30 conservative systems
31 cycle
32 degree
33 degrees of freedom
34 dynamics
35 elliptic
36 elliptic cycles
37 equations
38 field
39 freedom
40 hyperbolic
41 hyperbolic cycles
42 initial stage
43 key role
44 mechanism
45 motion
46 multiplication
47 pitchfork bifurcation
48 presence
49 results
50 role
51 saddle-node bifurcation
52 scenario of transition
53 scenarios
54 separatrix surface
55 stage
56 subharmonic cascade
57 surface
58 system
59 theory
60 torus
61 transition
62 vicinity
63 schema:name Chaotic Dynamics of Homogeneous Yang–Mills Fields with Three Degrees of Freedom
64 schema:pagination 296-303
65 schema:productId N12e7b33beb71414693535fb8cb4e32cc
66 Nf4e2cf235cf44d6b9901f5ca3419b0bc
67 schema:sameAs https://app.dimensions.ai/details/publication/pub.1148225388
68 https://doi.org/10.1134/s0012266122030028
69 schema:sdDatePublished 2022-09-02T16:07
70 schema:sdLicense https://scigraph.springernature.com/explorer/license/
71 schema:sdPublisher N7a5907a0914f4161a8c5a71ead0560dc
72 schema:url https://doi.org/10.1134/s0012266122030028
73 sgo:license sg:explorer/license/
74 sgo:sdDataset articles
75 rdf:type schema:ScholarlyArticle
76 N12e7b33beb71414693535fb8cb4e32cc schema:name doi
77 schema:value 10.1134/s0012266122030028
78 rdf:type schema:PropertyValue
79 N584ec2f6a1134586b774b0973e561720 rdf:first sg:person.07542754031.25
80 rdf:rest rdf:nil
81 N7a5907a0914f4161a8c5a71ead0560dc schema:name Springer Nature - SN SciGraph project
82 rdf:type schema:Organization
83 Naa98025db09a4b959791de437ed01178 schema:volumeNumber 58
84 rdf:type schema:PublicationVolume
85 Nde3f7250ccfa49918252a7cab0000c52 schema:issueNumber 3
86 rdf:type schema:PublicationIssue
87 Nf4e2cf235cf44d6b9901f5ca3419b0bc schema:name dimensions_id
88 schema:value pub.1148225388
89 rdf:type schema:PropertyValue
90 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
91 schema:name Mathematical Sciences
92 rdf:type schema:DefinedTerm
93 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
94 schema:name Pure Mathematics
95 rdf:type schema:DefinedTerm
96 sg:journal.1135881 schema:issn 0012-2661
97 1608-3083
98 schema:name Differential Equations
99 schema:publisher Pleiades Publishing
100 rdf:type schema:Periodical
101 sg:person.07542754031.25 schema:affiliation grid-institutes:grid.4886.2
102 schema:familyName Magnitskii
103 schema:givenName N. A.
104 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07542754031.25
105 rdf:type schema:Person
106 sg:pub.10.1134/s0012266108120045 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011073704
107 https://doi.org/10.1134/s0012266108120045
108 rdf:type schema:CreativeWork
109 sg:pub.10.1134/s0012266109050048 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012866682
110 https://doi.org/10.1134/s0012266109050048
111 rdf:type schema:CreativeWork
112 sg:pub.10.1134/s0012266109120039 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032331451
113 https://doi.org/10.1134/s0012266109120039
114 rdf:type schema:CreativeWork
115 sg:pub.10.1134/s0012266110110145 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011605021
116 https://doi.org/10.1134/s0012266110110145
117 rdf:type schema:CreativeWork
118 grid-institutes:grid.4886.2 schema:alternateName Federal Research Center “Computer Science and Control,”Russian Academy of Sciences, 119333, Moscow, Russia
119 schema:name Federal Research Center “Computer Science and Control,”Russian Academy of Sciences, 119333, Moscow, Russia
120 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...