Spectral Analysis of Integro-Differential Equations Arising in Thermal Physics View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2022-02-01

AUTHORS

E. V. Pankratova

ABSTRACT

The Gurtin–Pipkin integro-differential equation is considered under the assumption that its kernels are series of exponentials. For the operator function which is its symbol, the asymptotics of the nonreal part of the spectrum is found.

PAGES

280-284

Identifiers

URI

http://scigraph.springernature.com/pub.10.1134/s0012266122020136

DOI

http://dx.doi.org/10.1134/s0012266122020136

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1147563915


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Pure Mathematics", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Lomonosov Moscow State University, 119991, Moscow, Russia", 
          "id": "http://www.grid.ac/institutes/grid.14476.30", 
          "name": [
            "Lomonosov Moscow State University, 119991, Moscow, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Pankratova", 
        "givenName": "E. V.", 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1134/s0012266121090111", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1142326513", 
          "https://doi.org/10.1134/s0012266121090111"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10958-011-0600-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023412722", 
          "https://doi.org/10.1007/s10958-011-0600-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00281373", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018980949", 
          "https://doi.org/10.1007/bf00281373"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10958-014-2019-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013952340", 
          "https://doi.org/10.1007/s10958-014-2019-4"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2022-02-01", 
    "datePublishedReg": "2022-02-01", 
    "description": "Abstract The Gurtin\u2013Pipkin integro-differential equation is considered under the assumption that\nits kernels are series of exponentials. For the operator function which is its symbol, the\nasymptotics of the nonreal part of the spectrum is found.", 
    "genre": "article", 
    "id": "sg:pub.10.1134/s0012266122020136", 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1135881", 
        "issn": [
          "0012-2661", 
          "1608-3083"
        ], 
        "name": "Differential Equations", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "2", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "58"
      }
    ], 
    "keywords": [
      "integro-differential equations", 
      "series of exponentials", 
      "operator functions", 
      "thermal physics", 
      "equations", 
      "asymptotics", 
      "physics", 
      "exponential", 
      "kernel", 
      "spectral analysis", 
      "assumption", 
      "function", 
      "spectra", 
      "symbols", 
      "Abstract", 
      "analysis", 
      "series", 
      "part"
    ], 
    "name": "Spectral Analysis of Integro-Differential Equations Arising in Thermal Physics", 
    "pagination": "280-284", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1147563915"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1134/s0012266122020136"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1134/s0012266122020136", 
      "https://app.dimensions.ai/details/publication/pub.1147563915"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-09-02T16:07", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220902/entities/gbq_results/article/article_946.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1134/s0012266122020136"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1134/s0012266122020136'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1134/s0012266122020136'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1134/s0012266122020136'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1134/s0012266122020136'


 

This table displays all metadata directly associated to this object as RDF triples.

89 TRIPLES      21 PREDICATES      46 URIs      34 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1134/s0012266122020136 schema:about anzsrc-for:01
2 anzsrc-for:0101
3 schema:author Nc01b235878e445a1b03dd25d0aad9d59
4 schema:citation sg:pub.10.1007/bf00281373
5 sg:pub.10.1007/s10958-011-0600-7
6 sg:pub.10.1007/s10958-014-2019-4
7 sg:pub.10.1134/s0012266121090111
8 schema:datePublished 2022-02-01
9 schema:datePublishedReg 2022-02-01
10 schema:description Abstract The Gurtin–Pipkin integro-differential equation is considered under the assumption that its kernels are series of exponentials. For the operator function which is its symbol, the asymptotics of the nonreal part of the spectrum is found.
11 schema:genre article
12 schema:isAccessibleForFree false
13 schema:isPartOf N123b95cbb6ca48d284268cb943ae69ea
14 Nb436d0e3fada4821b9b80f53169dc7d1
15 sg:journal.1135881
16 schema:keywords Abstract
17 analysis
18 assumption
19 asymptotics
20 equations
21 exponential
22 function
23 integro-differential equations
24 kernel
25 operator functions
26 part
27 physics
28 series
29 series of exponentials
30 spectra
31 spectral analysis
32 symbols
33 thermal physics
34 schema:name Spectral Analysis of Integro-Differential Equations Arising in Thermal Physics
35 schema:pagination 280-284
36 schema:productId Nda5d52c46d0347cabdfadd296e6ffb46
37 Nf9eb0c6cf5ef414ebf8f73eedf42da35
38 schema:sameAs https://app.dimensions.ai/details/publication/pub.1147563915
39 https://doi.org/10.1134/s0012266122020136
40 schema:sdDatePublished 2022-09-02T16:07
41 schema:sdLicense https://scigraph.springernature.com/explorer/license/
42 schema:sdPublisher N2109ac98d34c421c8c40673104d254c9
43 schema:url https://doi.org/10.1134/s0012266122020136
44 sgo:license sg:explorer/license/
45 sgo:sdDataset articles
46 rdf:type schema:ScholarlyArticle
47 N123b95cbb6ca48d284268cb943ae69ea schema:issueNumber 2
48 rdf:type schema:PublicationIssue
49 N2109ac98d34c421c8c40673104d254c9 schema:name Springer Nature - SN SciGraph project
50 rdf:type schema:Organization
51 Naa1e181b8f114446bc2c31db07abdc23 schema:affiliation grid-institutes:grid.14476.30
52 schema:familyName Pankratova
53 schema:givenName E. V.
54 rdf:type schema:Person
55 Nb436d0e3fada4821b9b80f53169dc7d1 schema:volumeNumber 58
56 rdf:type schema:PublicationVolume
57 Nc01b235878e445a1b03dd25d0aad9d59 rdf:first Naa1e181b8f114446bc2c31db07abdc23
58 rdf:rest rdf:nil
59 Nda5d52c46d0347cabdfadd296e6ffb46 schema:name doi
60 schema:value 10.1134/s0012266122020136
61 rdf:type schema:PropertyValue
62 Nf9eb0c6cf5ef414ebf8f73eedf42da35 schema:name dimensions_id
63 schema:value pub.1147563915
64 rdf:type schema:PropertyValue
65 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
66 schema:name Mathematical Sciences
67 rdf:type schema:DefinedTerm
68 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
69 schema:name Pure Mathematics
70 rdf:type schema:DefinedTerm
71 sg:journal.1135881 schema:issn 0012-2661
72 1608-3083
73 schema:name Differential Equations
74 rdf:type schema:Periodical
75 sg:pub.10.1007/bf00281373 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018980949
76 https://doi.org/10.1007/bf00281373
77 rdf:type schema:CreativeWork
78 sg:pub.10.1007/s10958-011-0600-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023412722
79 https://doi.org/10.1007/s10958-011-0600-7
80 rdf:type schema:CreativeWork
81 sg:pub.10.1007/s10958-014-2019-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013952340
82 https://doi.org/10.1007/s10958-014-2019-4
83 rdf:type schema:CreativeWork
84 sg:pub.10.1134/s0012266121090111 schema:sameAs https://app.dimensions.ai/details/publication/pub.1142326513
85 https://doi.org/10.1134/s0012266121090111
86 rdf:type schema:CreativeWork
87 grid-institutes:grid.14476.30 schema:alternateName Lomonosov Moscow State University, 119991, Moscow, Russia
88 schema:name Lomonosov Moscow State University, 119991, Moscow, Russia
89 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...