Controllability for Problems with Mixed Constraints View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2022-02

AUTHORS

A. V. Arutyunov, S. E. Zhukovskiy

ABSTRACT

For a controlled system with mixed equality- and inequality-type constraints and a geometric constraint that is a nonempty closed convex set, sufficient conditions for the existence of feasible positional controls are obtained in terms of first derivatives of mappings that define the mixed constraints. In addition, in terms of the first and second derivatives of these mappings, sufficient conditions for the existence of feasible positional controls are found that are also applicable in the case of degeneration of the first derivatives of the mappings. More... »

PAGES

256-263

References to SciGraph publications

  • 2006-02. Implicit function theorem without a priori assumptions about normality in COMPUTATIONAL MATHEMATICS AND MATHEMATICAL PHYSICS
  • 2010-11. Local solvability of control systems with mixed constraints in DIFFERENTIAL EQUATIONS
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1134/s0012266122020100

    DOI

    http://dx.doi.org/10.1134/s0012266122020100

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1147549482


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Mathematical Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0102", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Applied Mathematics", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Trapeznikov Institute of Control Sciences, Russian Academy of Sciences, 117997, Moscow, Russia", 
              "id": "http://www.grid.ac/institutes/grid.4886.2", 
              "name": [
                "Trapeznikov Institute of Control Sciences, Russian Academy of Sciences, 117997, Moscow, Russia"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Arutyunov", 
            "givenName": "A. V.", 
            "id": "sg:person.010130607705.20", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010130607705.20"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Trapeznikov Institute of Control Sciences, Russian Academy of Sciences, 117997, Moscow, Russia", 
              "id": "http://www.grid.ac/institutes/grid.4886.2", 
              "name": [
                "Trapeznikov Institute of Control Sciences, Russian Academy of Sciences, 117997, Moscow, Russia"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Zhukovskiy", 
            "givenName": "S. E.", 
            "id": "sg:person.016133335577.22", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016133335577.22"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1134/s0012266110110042", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1044102409", 
              "https://doi.org/10.1134/s0012266110110042"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1134/s0965542506020023", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1012913677", 
              "https://doi.org/10.1134/s0965542506020023"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2022-02", 
        "datePublishedReg": "2022-02-01", 
        "description": "Abstract For a controlled system with mixed equality- and inequality-type constraints and\na geometric constraint that is a nonempty closed convex set, sufficient conditions for the existence\nof feasible positional controls are obtained in terms of first derivatives of mappings that define the\nmixed constraints. In addition, in terms of the first and second derivatives of these mappings,\nsufficient conditions for the existence of feasible positional controls are found that are also\napplicable in the case of degeneration of the first derivatives of the mappings.", 
        "genre": "article", 
        "id": "sg:pub.10.1134/s0012266122020100", 
        "isAccessibleForFree": true, 
        "isPartOf": [
          {
            "id": "sg:journal.1135881", 
            "issn": [
              "0012-2661", 
              "1608-3083"
            ], 
            "name": "Differential Equations", 
            "publisher": "Pleiades Publishing", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "2", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "58"
          }
        ], 
        "keywords": [
          "mixed constraints", 
          "sufficient conditions", 
          "inequality-type constraints", 
          "first derivative", 
          "positional control", 
          "mixed equality", 
          "case of degeneration", 
          "convex sets", 
          "second derivative", 
          "geometric constraints", 
          "constraints", 
          "existence", 
          "nonempty", 
          "controllability", 
          "terms", 
          "problem", 
          "derivatives", 
          "mapping", 
          "set", 
          "conditions", 
          "system", 
          "control", 
          "equality", 
          "cases", 
          "Abstract", 
          "addition", 
          "degeneration"
        ], 
        "name": "Controllability for Problems with Mixed Constraints", 
        "pagination": "256-263", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1147549482"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1134/s0012266122020100"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1134/s0012266122020100", 
          "https://app.dimensions.ai/details/publication/pub.1147549482"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2022-10-01T06:50", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20221001/entities/gbq_results/article/article_942.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1134/s0012266122020100"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1134/s0012266122020100'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1134/s0012266122020100'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1134/s0012266122020100'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1134/s0012266122020100'


     

    This table displays all metadata directly associated to this object as RDF triples.

    99 TRIPLES      21 PREDICATES      54 URIs      44 LITERALS      6 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1134/s0012266122020100 schema:about anzsrc-for:01
    2 anzsrc-for:0102
    3 schema:author N0913240775ba4d80aebfd0d303e8e368
    4 schema:citation sg:pub.10.1134/s0012266110110042
    5 sg:pub.10.1134/s0965542506020023
    6 schema:datePublished 2022-02
    7 schema:datePublishedReg 2022-02-01
    8 schema:description Abstract For a controlled system with mixed equality- and inequality-type constraints and a geometric constraint that is a nonempty closed convex set, sufficient conditions for the existence of feasible positional controls are obtained in terms of first derivatives of mappings that define the mixed constraints. In addition, in terms of the first and second derivatives of these mappings, sufficient conditions for the existence of feasible positional controls are found that are also applicable in the case of degeneration of the first derivatives of the mappings.
    9 schema:genre article
    10 schema:isAccessibleForFree true
    11 schema:isPartOf N5bb07554b6384dc4b5bcabe432b79b2b
    12 Nef4c09ec804a40ae8b28aabd72e7e9c8
    13 sg:journal.1135881
    14 schema:keywords Abstract
    15 addition
    16 case of degeneration
    17 cases
    18 conditions
    19 constraints
    20 control
    21 controllability
    22 convex sets
    23 degeneration
    24 derivatives
    25 equality
    26 existence
    27 first derivative
    28 geometric constraints
    29 inequality-type constraints
    30 mapping
    31 mixed constraints
    32 mixed equality
    33 nonempty
    34 positional control
    35 problem
    36 second derivative
    37 set
    38 sufficient conditions
    39 system
    40 terms
    41 schema:name Controllability for Problems with Mixed Constraints
    42 schema:pagination 256-263
    43 schema:productId N2b7cc4db92dc4ac691dceaddaf7c6553
    44 N4966cb8754a84381b8eff0e6bb13fee8
    45 schema:sameAs https://app.dimensions.ai/details/publication/pub.1147549482
    46 https://doi.org/10.1134/s0012266122020100
    47 schema:sdDatePublished 2022-10-01T06:50
    48 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    49 schema:sdPublisher Ndecac092160d4b8687ebdbe0499d1d14
    50 schema:url https://doi.org/10.1134/s0012266122020100
    51 sgo:license sg:explorer/license/
    52 sgo:sdDataset articles
    53 rdf:type schema:ScholarlyArticle
    54 N0913240775ba4d80aebfd0d303e8e368 rdf:first sg:person.010130607705.20
    55 rdf:rest Naef705fcbca245a8a08f382730e7abbc
    56 N2b7cc4db92dc4ac691dceaddaf7c6553 schema:name doi
    57 schema:value 10.1134/s0012266122020100
    58 rdf:type schema:PropertyValue
    59 N4966cb8754a84381b8eff0e6bb13fee8 schema:name dimensions_id
    60 schema:value pub.1147549482
    61 rdf:type schema:PropertyValue
    62 N5bb07554b6384dc4b5bcabe432b79b2b schema:volumeNumber 58
    63 rdf:type schema:PublicationVolume
    64 Naef705fcbca245a8a08f382730e7abbc rdf:first sg:person.016133335577.22
    65 rdf:rest rdf:nil
    66 Ndecac092160d4b8687ebdbe0499d1d14 schema:name Springer Nature - SN SciGraph project
    67 rdf:type schema:Organization
    68 Nef4c09ec804a40ae8b28aabd72e7e9c8 schema:issueNumber 2
    69 rdf:type schema:PublicationIssue
    70 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
    71 schema:name Mathematical Sciences
    72 rdf:type schema:DefinedTerm
    73 anzsrc-for:0102 schema:inDefinedTermSet anzsrc-for:
    74 schema:name Applied Mathematics
    75 rdf:type schema:DefinedTerm
    76 sg:journal.1135881 schema:issn 0012-2661
    77 1608-3083
    78 schema:name Differential Equations
    79 schema:publisher Pleiades Publishing
    80 rdf:type schema:Periodical
    81 sg:person.010130607705.20 schema:affiliation grid-institutes:grid.4886.2
    82 schema:familyName Arutyunov
    83 schema:givenName A. V.
    84 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010130607705.20
    85 rdf:type schema:Person
    86 sg:person.016133335577.22 schema:affiliation grid-institutes:grid.4886.2
    87 schema:familyName Zhukovskiy
    88 schema:givenName S. E.
    89 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016133335577.22
    90 rdf:type schema:Person
    91 sg:pub.10.1134/s0012266110110042 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044102409
    92 https://doi.org/10.1134/s0012266110110042
    93 rdf:type schema:CreativeWork
    94 sg:pub.10.1134/s0965542506020023 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012913677
    95 https://doi.org/10.1134/s0965542506020023
    96 rdf:type schema:CreativeWork
    97 grid-institutes:grid.4886.2 schema:alternateName Trapeznikov Institute of Control Sciences, Russian Academy of Sciences, 117997, Moscow, Russia
    98 schema:name Trapeznikov Institute of Control Sciences, Russian Academy of Sciences, 117997, Moscow, Russia
    99 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...