Well-Posed Solvability of Integro-Differential Equations in Spaces of Vector Functions Holomorphic in a Sector View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2022-02-01

AUTHORS

V. V. Vlasov, N. A. Rautian

ABSTRACT

We study linear spaces of vector functions that are holomorphic in an angular domain of the complex plane and take values in a separable Hilbert space. It is shown that these spaces equipped with the corresponding norms are Hilbert spaces. In these spaces, we study the initial value problem for integro-differential equations with unbounded operator coefficients and establish its well-posed solvability. More... »

PAGES

227-241

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1134/s0012266122020082

DOI

http://dx.doi.org/10.1134/s0012266122020082

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1147552562


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Pure Mathematics", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Moscow Center for Fundamental and Applied Mathematics, 119991, Moscow, Russia", 
          "id": "http://www.grid.ac/institutes/None", 
          "name": [
            "Lomonosov Moscow State University, 119991, Moscow, Russia", 
            "Moscow Center for Fundamental and Applied Mathematics, 119991, Moscow, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Vlasov", 
        "givenName": "V. V.", 
        "id": "sg:person.016047247632.43", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016047247632.43"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Moscow Center for Fundamental and Applied Mathematics, 119991, Moscow, Russia", 
          "id": "http://www.grid.ac/institutes/None", 
          "name": [
            "Lomonosov Moscow State University, 119991, Moscow, Russia", 
            "Moscow Center for Fundamental and Applied Mathematics, 119991, Moscow, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Rautian", 
        "givenName": "N. A.", 
        "id": "sg:person.012766246405.06", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012766246405.06"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/s10958-014-2019-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013952340", 
          "https://doi.org/10.1007/s10958-014-2019-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1134/s001226612104008x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1138307756", 
          "https://doi.org/10.1134/s001226612104008x"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-642-53393-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1109710052", 
          "https://doi.org/10.1007/978-3-642-53393-8"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2022-02-01", 
    "datePublishedReg": "2022-02-01", 
    "description": "Abstract We study linear spaces of vector functions that are holomorphic in an angular domain of\nthe complex plane and take values in a separable Hilbert space. It is shown that these spaces\nequipped with the corresponding norms are Hilbert spaces. In these spaces, we study the initial\nvalue problem for integro-differential equations with unbounded operator coefficients and establish\nits well-posed solvability.", 
    "genre": "article", 
    "id": "sg:pub.10.1134/s0012266122020082", 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1135881", 
        "issn": [
          "0012-2661", 
          "1608-3083"
        ], 
        "name": "Differential Equations", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "2", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "58"
      }
    ], 
    "keywords": [
      "integro-differential equations", 
      "Hilbert space", 
      "unbounded operator coefficients", 
      "separable Hilbert space", 
      "operator coefficients", 
      "linear space", 
      "value problem", 
      "vector functions", 
      "complex plane", 
      "angular domain", 
      "corresponding norms", 
      "solvability", 
      "function holomorphic", 
      "equations", 
      "space", 
      "holomorphic", 
      "problem", 
      "plane", 
      "coefficient", 
      "norms", 
      "function", 
      "domain", 
      "values", 
      "Abstract", 
      "sector"
    ], 
    "name": "Well-Posed Solvability of Integro-Differential Equations in Spaces of Vector Functions Holomorphic in a Sector", 
    "pagination": "227-241", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1147552562"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1134/s0012266122020082"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1134/s0012266122020082", 
      "https://app.dimensions.ai/details/publication/pub.1147552562"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-09-02T16:07", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220902/entities/gbq_results/article/article_925.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1134/s0012266122020082"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1134/s0012266122020082'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1134/s0012266122020082'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1134/s0012266122020082'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1134/s0012266122020082'


 

This table displays all metadata directly associated to this object as RDF triples.

101 TRIPLES      21 PREDICATES      52 URIs      41 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1134/s0012266122020082 schema:about anzsrc-for:01
2 anzsrc-for:0101
3 schema:author Ne8acd15ef3b5460a9fd450a27f1d9305
4 schema:citation sg:pub.10.1007/978-3-642-53393-8
5 sg:pub.10.1007/s10958-014-2019-4
6 sg:pub.10.1134/s001226612104008x
7 schema:datePublished 2022-02-01
8 schema:datePublishedReg 2022-02-01
9 schema:description Abstract We study linear spaces of vector functions that are holomorphic in an angular domain of the complex plane and take values in a separable Hilbert space. It is shown that these spaces equipped with the corresponding norms are Hilbert spaces. In these spaces, we study the initial value problem for integro-differential equations with unbounded operator coefficients and establish its well-posed solvability.
10 schema:genre article
11 schema:isAccessibleForFree false
12 schema:isPartOf N57e0b36484fc432dadab5a1be693bf8d
13 Ndea63c0a9f3e4159ab38b654b3c68653
14 sg:journal.1135881
15 schema:keywords Abstract
16 Hilbert space
17 angular domain
18 coefficient
19 complex plane
20 corresponding norms
21 domain
22 equations
23 function
24 function holomorphic
25 holomorphic
26 integro-differential equations
27 linear space
28 norms
29 operator coefficients
30 plane
31 problem
32 sector
33 separable Hilbert space
34 solvability
35 space
36 unbounded operator coefficients
37 value problem
38 values
39 vector functions
40 schema:name Well-Posed Solvability of Integro-Differential Equations in Spaces of Vector Functions Holomorphic in a Sector
41 schema:pagination 227-241
42 schema:productId N54ad33cfdfa74f8783ed301e855ce7bb
43 N580e5df3ac3d4d138d995ab27723c9a1
44 schema:sameAs https://app.dimensions.ai/details/publication/pub.1147552562
45 https://doi.org/10.1134/s0012266122020082
46 schema:sdDatePublished 2022-09-02T16:07
47 schema:sdLicense https://scigraph.springernature.com/explorer/license/
48 schema:sdPublisher N55766e88c81f4bbc8ca587d7a074f92e
49 schema:url https://doi.org/10.1134/s0012266122020082
50 sgo:license sg:explorer/license/
51 sgo:sdDataset articles
52 rdf:type schema:ScholarlyArticle
53 N54ad33cfdfa74f8783ed301e855ce7bb schema:name doi
54 schema:value 10.1134/s0012266122020082
55 rdf:type schema:PropertyValue
56 N55766e88c81f4bbc8ca587d7a074f92e schema:name Springer Nature - SN SciGraph project
57 rdf:type schema:Organization
58 N57e0b36484fc432dadab5a1be693bf8d schema:issueNumber 2
59 rdf:type schema:PublicationIssue
60 N580e5df3ac3d4d138d995ab27723c9a1 schema:name dimensions_id
61 schema:value pub.1147552562
62 rdf:type schema:PropertyValue
63 Ndea63c0a9f3e4159ab38b654b3c68653 schema:volumeNumber 58
64 rdf:type schema:PublicationVolume
65 Ne8acd15ef3b5460a9fd450a27f1d9305 rdf:first sg:person.016047247632.43
66 rdf:rest Nffcfdd9f488e45508d4a9e10e159546f
67 Nffcfdd9f488e45508d4a9e10e159546f rdf:first sg:person.012766246405.06
68 rdf:rest rdf:nil
69 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
70 schema:name Mathematical Sciences
71 rdf:type schema:DefinedTerm
72 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
73 schema:name Pure Mathematics
74 rdf:type schema:DefinedTerm
75 sg:journal.1135881 schema:issn 0012-2661
76 1608-3083
77 schema:name Differential Equations
78 rdf:type schema:Periodical
79 sg:person.012766246405.06 schema:affiliation grid-institutes:None
80 schema:familyName Rautian
81 schema:givenName N. A.
82 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012766246405.06
83 rdf:type schema:Person
84 sg:person.016047247632.43 schema:affiliation grid-institutes:None
85 schema:familyName Vlasov
86 schema:givenName V. V.
87 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016047247632.43
88 rdf:type schema:Person
89 sg:pub.10.1007/978-3-642-53393-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1109710052
90 https://doi.org/10.1007/978-3-642-53393-8
91 rdf:type schema:CreativeWork
92 sg:pub.10.1007/s10958-014-2019-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013952340
93 https://doi.org/10.1007/s10958-014-2019-4
94 rdf:type schema:CreativeWork
95 sg:pub.10.1134/s001226612104008x schema:sameAs https://app.dimensions.ai/details/publication/pub.1138307756
96 https://doi.org/10.1134/s001226612104008x
97 rdf:type schema:CreativeWork
98 grid-institutes:None schema:alternateName Moscow Center for Fundamental and Applied Mathematics, 119991, Moscow, Russia
99 schema:name Lomonosov Moscow State University, 119991, Moscow, Russia
100 Moscow Center for Fundamental and Applied Mathematics, 119991, Moscow, Russia
101 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...